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1. Closed-form Solutions to the Proximal Operators
The proximal operator of a given function f(·) is defined by

proxλf = arg min
v

{
f(v)− 1

λ
‖x− v‖22

}
(1)

This operator has closed-form solution when the function f(·) has the form of `1, `1/2, `1−2, and logsum regularization.
For `1, the solution is the soft-thresholding function and for `1/2 it is the so-called half-thresholding function. The soft-
thresholding function is defined as

Sλ(x) = sgn(x)[|x| − λ]+, (2)

where sgn(·) is the sign function and [·]+ calculates the maximum of the argument and 0. The hard-thresholding function is
given by

Hλ(x) =

{
2
3x(1 + cos(2π

3 −
2
3φλ(x))), |x| >

3√54
4 (λ)

2
3 ,

0, otherwise,
(3)

where φλ(x) = arccos(λ8 ( |x|3 )−
3
2 ).

The `2,1 group sparsity regularizer is defined as

R(A) = Φ(‖Ag‖2) =
∑
g

‖Ag‖p2, (4)

where Φ(·) is the function of the group `2 norms ‖Ag‖2 and has the form of `1 norm here. The proximal operator of the
sparsity-inducing matrix A defined in the main paper is

At+1 = proxληR(At+∆) = arg min
A

{
R(At+∆) +

1

2λη
‖A−At+∆‖2F

}
, (5)

where the function R(·) replaces f(·) in Eqn. 1. The closed-form solution of the proximal operator in Eqn. 5 can be derived
from the solutions to Eqn. 1 according to the following theorem [1].

Theorem 1 Let f : E→ R be a function given by f(x) = g(‖x‖), where g : R→ (−∞,∞] is a proper closed and convex
function satisfying dom(g) ⊆ [0,∞). Then,

proxλf (x) =

{
proxλg(‖x‖2) x

‖x‖2 , x 6= 0,

{u ∈ E : ‖u‖2 = proxλg(0)}, x = 0.
(6)

Thus, with a little bit variable substitution, when Φ(·) is `1 regularizer, the solution to Eqn. 5 is given by

At+1 =

[
1− λη

‖Ag‖2

]
+

Ag,i, (7)
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Regularizer Solution

`1 At+1 =
[
1− λη

‖Ag‖2

]
+
Ag,i

`1/2
At+1 =

{
2
3

(
1 + cos

(
2π
3 −

2
3φλη (‖Ag‖2)

))
Ag,i, ‖Ag‖2 >

3√54
4 (λη)

2
3 ,

0, otherwise,
φλη(‖Ag‖2) = arccos(λη8 (

‖Ag‖2
3 )−

3
2 )

`1−2
At+1 = (1 + λη

‖c‖2 )[1− λη
‖Ag‖2 ]+Ag,i

cg = [‖Ag‖2 − λη]+

logsum
At+1 =

{
c1+
√
c2

2
Ag,i

‖Ag‖2 , c2 > 0,

0, c2 6 0,

λ > 0, 0 < ε <
√
λη, c1 = ‖Ag‖2 − ε, c2 = c21 − 4(λη − ε‖Ag‖2)

Table 1: The solution to the proximal operator for `1, `1−2, `1/2, and logsum regularizers.

Regularizer `1 `1−2 `1/2 logsum
Regularization factor λ 2e−4 2e−4 4e−4 9e−5

Table 2: The regularization factor for `1, `1−2, `1/2, and logsum regularizers.

where Ag,i is the i-th element in the g-th group of the sparsity-inducing matrix A, and for the sake of simplicity, the subscript
t+∆ is omitted.

When the function Φ(·) has the form of `1/2, `1−2, and logsum, it is non-convex. However, we still use the variable
substitution in Theorem 1 experimentally and the corresponding results in the main paper are also very competitive. For `1/2
regularizer, the solution is given by

At+1 =

{
2
3

(
1 + cos

(
2π
3 −

2
3φλη (‖Ag‖2)

))
Ag,i, ‖Ag‖2 >

3√54
4 (λη)

2
3 ,

0, otherwise,
(8)

where φλη(‖Ag‖2) = arccos(λη8 (
‖Ag‖2

3 )−
3
2 ). Similarly, the solution to the logsum regularizer is given by

At+1 =

{
c1+
√
c2

2
Ag,i

‖Ag‖2 , c2 > 0,

0, c2 6 0,
(9)

where λ > 0, 0 < ε <
√
λη, c1 = ‖Ag‖2 − ε, and c2 = c21 − 4(λη − ε‖Ag‖2). When the regularizer is `1−2 regularizer,

then the solution is given by

At+1 = (1 +
λη

‖c‖2
)[1− λη

‖Ag‖2
]+Ag,i (10)

where cg = [‖Ag‖2 − λη]+. Note that the case where all of the group `2 norms Ag equal 0 is not considered [6] because it
never happens during the optimization of our algorithm. The solutions are summarized in Table 1.

2. Hyper Parameters for Different Regularizers
The regularization factors for different regularizers are listed in Table 2. For CIFAR10 and CIFAR100 datasets, the

learning rate η of the sparsity-inducing matrix A during compression optimization is set to 0.1. The ratio between the
learning rate of W and A is set to 0.01. That is, the learning rate ηs of W during compression optimization is 0.001. For
ImageNet, both η and ηs during optimization are set to 0.001.

3. More Parameter Comparison
In Fig. 3 and Fig. 4, more parameter comparison results are shown. The figures report several operating points of the

proposed method and SSS [4]. The proposed method forms a lower error bound for SSS. In Fig. 3, our Hinge method without
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(a) ResNeXt20 [5], CIFAR100.

1 2 3 4 5 6 7 8 9 10 11 12

Layer

0

10

20

30

40

50

60

70

80

C
o
m

p
re

s
s
io

n
 r

a
ti
o
 (

%
)

(b) WRN [7], CIFAR100.
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(c) ResNet56 [2], CIFAR10.

Figure 1: The layer-wise or block-wise compression ratio of the model resulting from the proposed method.

distillation loss is already better than SSS. And with the distillation loss, the proposed method shoots even lower Top-1 error
rate.

4. Layer-wise Compression Ratio
The layer-wise or block-wise compression ratio of the model compressed by the proposed method is shown in Fig. 1 and

Fig. 2, respectively. For ResNeXt [5], the aim is to compress the 3 × 3 convolution in the residual block and the two 1 × 1
convolutions are used as the sparsity-inducing matrices. Thus, the block-wise compression ratio is reported. For ResNet [2]
and WRN [7], there are two 3 × 3 convolutions in each residual block. Each of the two convolutions is compressed by
introducing a sparsity-inducing matrix. Thus, the layer-wise compression ratio is reported. As shown in the Fig. 1b, Fig. 2a
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(a) ResNeXt164 [5].
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(b) ResNet164 [2].

Figure 2: The layer-wise or block-wise compression ratio of the model resulting from the proposed method. All results are
reported for CIFAR100.
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(a) ResNet164
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(b) ResNeXt164

Figure 3: Comparison between SSS [4] and the proposed method. Top-1 error rate is reported for CIFAR100.

and Fig. 2b, for WRN, ResNeXt164, and ResNet164, our approach tends to compress the shallow layers more compared
with the deep layers. This is consistent with former research [3]. As for ResNet56 in Fig 1c, the proposed method results in
a sawtooth architecture. That is, for the convolutions with the same feature dimension (i.e. Layer 1 to Layer 18, Layer 19 to
Layer 36, and Layer 37 to Layer54), the middle layers generally have a severer degree of compression.
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(a) CIFAR10, ResNet20
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(b) CIFAR10, ResNeXt20
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(c) CIFAR100, ResNet20
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(d) CIFAR100, ResNeXt20

Figure 4: Comparison between SSS [4] and the proposed method. Top-1 error rate is reported. (a) and (b) shows the results
on CIFAR10 while (c) and (d) shows the results on CIFAR100.
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