
Hierarchical Scene Coordinate Classification and Regression
for Visual Localization

—Supplementary Material—

Xiaotian Li1 Shuzhe Wang1 Yi Zhao1 Jakob Verbeek2 Juho Kannala1
1Aalto University 2Facebook AI Research

In this supplementary material, we provide more details
on network architecture, training procedure, and other ex-
perimental settings. Additional qualitative results are pre-
sented at the end.

A. Main Experiment Details
In this section, we present the experiment details on 7-

Scenes, 12-Scenes, Cambridge Landmarks, and the com-
bined scenes.

A.1. Network Architecture

We use a similar VGG-style [11] architecture as
DSAC++ [2] as the base regression network, except we use
ELU activation [4] instead of ReLU [7]. As mentioned in
the main paper, we found that the plain regression network
is faster to train with ReLU, while our network which has
additional conditioning layers and classification branches
works better with ELU. Conditioning layers and generators,
as well as two additional classification branches, are added
upon the base network for our 3-level hierarchical network
which is used in the main experiments.

There are three convolutional layers with stride 2 in
the regression base network. The output resolution of
the regression branch is thus reduced by a factor of 8.
Strided convolution, dilated convolution and upconvolution
are used in the two classification branches to enlarge the
receptive field and preserve the output resolution. The pre-
dicted classification labels are converted into one-hot for-
mat before being fed into the generators. If more than one
label map used as input to a conditioning generator, the la-
bel maps are concatenated.

The detailed architecture is given in Fig. 1. For experi-
ments on 7-Scenes, 12-Scenes, Cambridge Landmarks, we
use the same network architecture. For experiments on the
combined scenes, we increased the number of channels for
certain layers and added two more layers in the first con-
ditioning generator. The additional layers are marked in
red, and the increased channel counts are marked in red,
blue and purple for i7-Scenes, i12-Scenes and i19-Scenes,

respectively. The more compact architecture for the exper-
iments (Ours capacity- in Table 2 and Fig. 3 of the main
paper) on the combined scenes is illustrated in Fig. 2. In
the case we use different numbers of channels for a convo-
lutional layer, the channel counts are marked in red, blue
and purple for i7-Scenes, i12-Scenes and i19-Scenes re-
spectively.

As in DSAC++ [2], our network always takes an input
image of size 640 × 480. We follow the same practice
to resize larger images as [2]. That is, the image is first
rescaled to height 480. If its width is still larger than 640,
it is cropped to width 640. Central cropping is used at test
time, and random horizontal offsets are applied during train-
ing.

A.2. Network Training

For 7-Scenes and 12-Scenes, our network is trained from
scratch for 300K iterations with an initial learning rate of
10−4 using Adam [6], and the batch size is set to 1. We
halve the learning rate every 50K iterations for the last 200K
iterations. For the Cambridge Landmark dataset, the dense
reconstructions are far from perfect. The rendered ground
truth scene coordinates contain a significant amount of out-
liers, which make the training difficult. Therefore, we train
the network for 600K iterations for experiments on this
dataset. For the combined scenes, the network is trained
for 900K iterations.

As mentioned in the main paper, we found that the accu-
racy of the final regression predictions is critical to high lo-
calization performance. Therefore, a larger weight is given
to the regression loss term. The weights for the classifi-
cation loss terms w1, w2 are set to 1 for all scenes. The
weight for the regression loss term is set to 100,000 for the
three combined scenes and 10 for the other datasets.

For data augmentation, affine transformations are ap-
plied to each training image. We translate, rotate, scale,
shear the image by values uniformly sampled from [-20%,
20%], [−30◦, 30◦], [0.7,1.5], [−10◦, 10◦], respectively. In
addition, we also augment the images with additive bright-

+

+

+

Concatenation

3x3, 1, 64

3x3, 2, 128

3x3, 2, 128

3x3, 1, 256

3x3, 2, 256

3x3, 1, 512

3x3, 1, 512

3x3, 1, 512

1x1, 1, 4096

cond

1x1, 1, 4096

cond

3x3, 1,
128/256/256/256

3x3, 2, 2,
128/256/256/256

3x3, 1, 2,
128/256/256/256

2x2, 2,
128/256/256/256

1x1, 1,
128/256/256/256

cond
1x1, 1,

64/128/128/128
cond

1x1, 1, 25

3x3, 2, 2, 256

3x3, 1, 2, 256
2x2, 2,

128/256/256/256

3x3, 1,
128/256/256/256

2x2, 2,
128/256/256/256

1x1, 1,
128/256/256/256

1x1, 1,
64/128/256/256

1x1, 1,
25/175/300/475

1x1, 1, 3

1x1, 1,
32/128/256/256

1x1, 1,
64/128/128/128

1x1, 1, 128

1x1, 1,
64/128/128/128

1x1, 1,
64/128/128/128

1x1, 1,
128/256/256/256

1x1, 1,
128/256/256/256

1x1, 1,
50/128/256/256

1x1, 1,
64/128/128/128

1x1, 1, 128

1x1, 1, 4096

1x1, 1, 4096

1x1, 1, 4096

1x1, 1, 4096

1x1, 1, 256

1x1, 1, 512

ArgMax ArgMax

RGB Image
(W x H x 3)

Scene Coordinate
Map

(W/8 x H/8 x 3)

Label Map
(W/8 x H/8 x 1)

Label Map
(W/8 x H/8 x 1)

Convolution
(kernel size, stride, channels)

Dilated Convolution
(kernel size, stride, dilation, channels)

Upconvolution
(kernel size, stride, channels)

Conditioning Layer

1x1, 1, 256

1x1, 1, 256

+

+

Regression

Generator Classification

Classification

One-Hot One-Hot

Generator

Figure 1. Detailed network architecture.

3x3, 1, 64

3x3, 2, 128

3x3, 2, 128

3x3, 1, 256

3x3, 2, 256

3x3, 1, 512

3x3, 1, 512

1x1, 1, 512

1x1, 1, 512

cond

1x1, 1, 512

cond

3x3, 1, 256

3x3, 2, 2, 256

3x3, 1, 2, 256

2x2, 2, 256

1x1, 1, 256

cond

1x1, 1, 128

cond

1x1, 1, 25

3x3, 2, 2, 256

3x3, 1, 2, 256

2x2, 2, 256

3x3, 1, 256

2x2, 2, 256

1x1, 1, 256
1x1, 1,

128/256/256
1x1, 1,

175/300/475

1x1, 1, 3

1x1, 1,
128/256/256
1x1, 1, 128

1x1, 1, 128

1x1, 1, 128

1x1, 1, 128

1x1, 1, 256

1x1, 1, 256

1x1, 1,
128/256/256
1x1, 1, 128

1x1, 1, 128

1x1, 1, 512

1x1, 1, 512

1x1, 1, 512

1x1, 1, 512

1x1, 1, 256

1x1, 1, 512

ArgMax ArgMax

RGB Image
(W x H x 3)

Scene Coordinate
Map

(W/8 x H/8 x 3)

Label Map
(W/8 x H/8 x 1)

Label Map
(W/8 x H/8 x 1)

1x1, 1, 512

1x1, 1, 512

3x3, 1, 512

1x1, 1, 512

1x1, 1, 512

1x1, 1, 512

cond

3x3, 1, 256

3x3, 1, 256

3x3, 1, 256

1x1, 1, 256

1x1, 1, 256

Concatenation

Convolution
(kernel size, stride, channels)

Dilated Convolution
(kernel size, stride, dilation, channels)

Upconvolution
(kernel size, stride, channels)

Conditioning Layer

+

+

+

+

+

Regression

Generator

Classification

Generator

Classification

One-Hot One-Hot

Figure 2. The more compact architecture of Ours capacity-.

ness changes uniformly sampled from [-20, 20]. When
training without data augmentation, as with [2], we ran-
domly shift the image by -4 to 4 pixels, both horizontally
and vertically, to make full use of data, as the output reso-
lution is reduced by a factor of 8.

A.3. Pose Optimization

At test time, we follow the same PnP-RANSAC pipeline
and parameter settings as in [2]. The inlier threshold is set
to τ = 10 for all the scenes. The softness factor is set to
β = 0.5 for the soft inlier count [2]. A set of 256 initial
hypotheses are sampled, and the refinement of the selected
hypothesis is performed until convergence for a maximum
of 100 iterations.

A.4. Run Time

The network training takes ≈12 hours for 300K itera-
tions on an NVIDIA Tesla V100 GPU, and ≈18 hours on
an NVIDIA GeForce GTX 1080 Ti GPU.

At test time, it takes ≈100ms for our method to localize
an image on an NVIDIA GeForce GTX 1080 Ti GPU and
an Intel Core i7-7820X CPU. Scene coordinate prediction
takes 50-65ms depending on the network size. Pose opti-
mization takes 30-60ms depending on the accuracy of the
predicted correspondences.

B. Experiments on the Aachen Dataset
In this section, we provide the experimental details on

the Aachen dataset.

B.1. Ground Truth Labels

Similar to the experiments on the other datasets, to gen-
erate the ground truth location labels, we run hierarchical
k-means clustering on the sparse point cloud model used
in [8], which is built with COLMAP [9, 10] using Super-
Point [5] as local feature detector and descriptor. For this
dataset we adopt a 4-level classification-only network. We
also experimented with two classification-regression net-
works, but the 4-level classification-only network works
better (see Table 5in the main paper). For the 4-level
classification-only network, we use four-level hierarchical
k-means with the branching factor set to 100 for all levels.
This results in ≈685K valid clusters at the finest level, with
each of them containing only a single 3D point. For the
experiments with the 4-level classification-regression net-
work and the 3-level classification-regression network, we
use three-level and two-level hierarchical k-means with the
same branching factor setting (100 for all levels), respec-
tively.

B.2. Network Architecture

As stated in the main paper, for the experiments on the
Aachen dataset, we use a list of sparse features as input to

the network, rather than a regular RGB image. Due to the
sparse and irregular format of the input, we use 1×1 con-
volutional layers in the network. We add a dummy spa-
tial dimension to the input, i.e. we use a descriptor map of
size N×1×256 as input. In addition, there are no shared
layers between different levels. To use image-level con-
textual information, every output layer including the first
one is also conditioned on an image ID. To achieve this, the
encoded image ID is concatenated with the label maps (if
available) and then fed into the conditioning parameter gen-
erators. As mentioned in the main paper, during training,
we use the ID of the training image. At inference time, we
adopt NetVLAD [1] for global image retrieval, and we use
the ID of a retrieved image. The detailed architecture of the
4-level classification-only network is given in Fig. 3. For the
4-level classification-regression network, we simply change
the last classification layer to a regression output layer. For
the 3-level classification-regression network, one classifica-
tion level is further removed.

B.3. Network Training

The network is trained from scratch for 900K iterations
with an initial learning rate of 10−4 using Adam [6], and the
batch size is set to 1, similar to the previous experiments.
We halve the learning rate every 50K iterations for the last
200K iterations. As in [3, 8], all images are converted to
grayscale before extracting the descriptors. Random affine
transformations, brightness and contrast changes are also
applied to the images before the feature extraction. During
training, we ignore the interest point detection, and a de-
scriptor is extract from the dense descriptor map if it has
an available corresponding 3D point in the spare 3D model.
Following [8], before extracting the NetVLAD [1] and Su-
perPoint [5] features, the images are downsampled such that
largest dimension is 960. At test time, for SuperPoint, Non-
Maximum Suppression (NMS) with radius 4 is applied to
the detected keypoints and 2K of them with the highest key-
point scores are used as the input to our network.

B.4. Pose Optimization

We follow the PnP-RANSAC algorithm as in [8] and
the same parameter settings are used. The inlier threshold
is set to τ = 10, and at most 5,000 hypotheses are sampled
if no hypotheses with more than 100 inliers are found. Note
that the pose optimization is applied independently for all
the top-10 retrieved database images.

B.5. Run Time

The network training takes 2-3 days on an NVIDIA
Tesla V100/NVIDIA GeForce GTX 1080 Ti GPU. On an
NVIDIA GeForce GTX 1080 Ti GPU and an Intel Core
i7-7820X CPU, it takes ≈1.1/1.4s (Aachen Day/Aachen
Night) for our method to localize an image. It takes

+

1x1, 1, 256

1x1, 1, 2048

cond

1x1, 1, 2048

cond

1x1, 1, 100

1x1, 1, 256

1x1, 1, 256

1x1, 1, 512

1x1, 1, 512

1x1, 1, 512

1x1, 1, 256

1x1, 1, 256

Descriptor Map
(N x 1 x 256)

Label Map
(N x 1 x 1)

Label Map
(N x 1 x 1)

Label Map
(N x 1 x 1)

1x1, 1, 256

1x1, 1, 512

1x1, 1, 512

1x1, 1, 512

cond

ArgMax

1x1, 1, 512

1x1, 1, 2048

1x1, 1, 2048

1x1, 1, 2048

1x1, 1, 2048

1x1, 1, 256

1x1, 1, 2048

cond

1x1, 1, 2048

cond

1x1, 1, 100

1x1, 1, 256

1x1, 1, 256

1x1, 1, 512

1x1, 1, 512

1x1, 1, 512

1x1, 1, 256

1x1, 1, 256

1x1, 1, 256

1x1, 1, 512

1x1, 1, 512

1x1, 1, 512

cond

ArgMax

1x1, 1, 512

1x1, 1, 2048

1x1, 1, 2048

1x1, 1, 2048

1x1, 1, 2048

1x1, 1, 256

1x1, 1, 2048

cond

1x1, 1, 2048

cond

1x1, 1, 100

1x1, 1, 256

1x1, 1, 128

1x1, 1, 512

1x1, 1, 128

1x1, 1, 256

1x1, 1, 256

1x1, 1, 512

1x1, 1, 512

1x1, 1, 512

ArgMax

1x1, 1, 2048

1x1, 1, 2048

1x1, 1, 2048

1x1, 1, 2048

1x1, 1, 256

1x1, 1, 2048

cond

1x1, 1, 2048

cond

1x1, 1, 100

1x1, 1, 128

1x1, 1, 128

1x1, 1, 512

1x1, 1, 128

1x1, 1, 256

1x1, 1, 256

1x1, 1, 512

1x1, 1, 512

1x1, 1, 512

ArgMax

1x1, 1, 2048

1x1, 1, 2048

1x1, 1, 2048

1x1, 1, 2048

Label Map
(N x 1 x 1)

Encoded Image ID

Concatenation

Convolution
(kernel size, stride, channels)

Conditioning Layer

+

One-Hot One-Hot One-Hot

++

GeneratorGenerator Generator Generator

Classification Classification Classification Classification

Figure 3. Detailed network architecture of the 4-level classification-only network for the Aachen dataset experiments.

≈170ms to extract the global and local descriptors. Scene
coordinate prediction takes ≈280ms (10×28ms) and pose
optimization takes ≈600/900ms (10×60/90ms) (Aachen
Day/Aachen Night). The time needed for global descriptor
matching and the simple pre-RANSAC filtering is negligi-
ble.

C. Additional Qualitative Results
We show in Fig. 4 the quality of scene coordinate predic-

tions for test images from 7-Scenes/i7-Scenes, and compare
our method to the regression-only baseline. The scene co-
ordinates are mapped to RGB values for visualization.

We show in Fig. 5 the quality of scene coordinate predic-
tions for the Aachen dataset experiments. The scene coordi-
nate predictions are visualized as 2D-2D matches between
the query and database images. We show only the inlier
matches.

References
[1] Relja Arandjelović, Petr Gronat, Akihiko Torii, Tomás Pa-

jdla, and Josef Sivic. NetVLAD: CNN architecture for
weakly supervised place recognition. In CVPR, 2016. 3

[2] Eric Brachmann and Carsten Rother. Learning less is more -
6D camera localization via 3D surface regression. In CVPR,
2018. 1, 3

[3] Eric Brachmann and Carsten Rother. Expert sample consen-
sus applied to camera re-localization. In ICCV, 2019. 3

[4] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-
iter. Fast and accurate deep network learning by exponential
linear units (ELUs). arXiv:1511.07289, 2015. 1

[5] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. SuperPoint: Self-supervised interest point detection
and description. In CVPR Workshops, 2018. 3

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv:1412.6980, 2014. 1, 3

[7] Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In ICML, 2010. 1

[8] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and
Marcin Dymczyk. From coarse to fine: Robust hierarchical
localization at large scale. In CVPR, 2019. 3

[9] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In CVPR, 2016. 3

[10] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In ECCV, 2016. 3

[11] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recognition.
arXiv:1409.1556, 2014. 1

i7
-S

ce
ne

s

Heads Office Stairs

RGB Image
Ground Truth
Scene Coordinates

Inlier Scene
Coordinates

Predicted Scene
Coordinates

RGB Image
Ground Truth
Scene Coordinates RGB Image

Ground Truth
Scene Coordinates

Inlier Scene
Coordinates

Predicted Scene
Coordinates

Inlier Scene
Coordinates

Predicted Scene
Coordinates

O
ur

s
R

eg
re

ss
io

n-
O

nl
y

7-
S

ce
ne

s
i7

-S
ce

ne
s

7-
S

ce
ne

s

Figure 4. We visualize the scene coordinate predictions for three test images from 7-Scenes/i7-Scenes. The XYZ coordinates are mapped
to RGB values. The ground truth scene coordinates are computed from the depth maps, and invalid depth values (0, 65535) are ignored.
Should a scene coordinate prediction be out of the scope of the corresponding individual scene, the prediction is treated as invalid and not
visualized. We also visualize the inlier scene coordinates retained after the pose optimization (PnP-RANSAC) stage. On both 7-Scenes
and i7-Scenes, our method produces consistently better scene coordinate predictions with more inliers compared to the regression-only
baseline.

Figure 5. We show the scene coordinate predictions for the Aachen dataset experiments. The scene coordinate predictions are visualized as
2D-2D matches between the query (left) and database (right) images. For each pair, the retrieved database image with the largest number
of inliers is selected, and only the inlier matches are visualized. We show that our method is able to produce accurate correspondences for
challenging queries (left column). Failure cases are also given (right column).

