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A. Architecture
We adopt the ControlGAN [3] as the basic framework

and replace batch normalisation with instance normalisation
[6] everywhere in the generator network except in the first
stage. Basically, the affine combination module (ACM) can
be inserted anywhere in the generator, but we experimen-
tally find that it is best to incorporate the module before up-
sampling blocks and image generation networks; see Fig. 2.

A.1. Residual Block

Each residual block contains two convolutional layers,
two instance normalisation (IN) [6], and one GLU [1] non-
linear function. The architecture of the residual block used
in the detail correction module is shown in Fig. 1.
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Figure 1. The architecture of the residual block.

B. Objective Functions
We train the main module and detail correction module

separately, and the generator and discriminator in both mod-
ules are trained alternatively by minimising both the gener-
ator loss LG and the discriminator loss LD.
Generator objective. The loss function for the generator
follows those used in ControlGAN [3], but we introduce a
regularisation term:

Lreg = 1− 1

CHW
||I ′ − I||, (1)

to prevent the network achieving identity mapping, which
can penalise large perturbations when the generated image
becomes the same as the input image.

LG =−
1

2
EI′∼PG

[
log(D(I′))

]
︸ ︷︷ ︸

unconditional adversarial loss

−
1

2
EI′∼PG

[
log(D(I′, S))

]
︸ ︷︷ ︸

conditional adversarial loss

+ LControlGAN + λ1Lreg,

(2)

LControlGAN = λ2LDAMSM + λ3(1− Lcorre(I
′, S)) + λ4Lrec(I

′, I),
(3)

where I is the real image sampled from the true image dis-
tribution Pdata, S is the corresponding matched text that
correctly describes the I , I ′ is the generated image sam-
pled from the model distribution PG. The unconditional
adversarial loss makes the synthetic image I ′ indistinguish-
able from the real image I , the conditional adversarial loss
aligns the generated image I ′ with the given text descrip-
tion S, LDAMSM [8] measures the text-image similarity at
the word-level to provide fine-grained feedback for image
generation, Lcorre [3] determines whether word-related vi-
sual attributes exist in the image, and Lrec [3] reduces ran-
domness involved in the generation process. λ1, λ2, λ3, and
λ4 are hyperparameters controlling the importance of addi-
tional losses. Note that we do not use Lrec when we train
the detail correction module.
Discriminator objective. The loss function for the discrim-
inator follows those used in ControlGAN [3], and the func-
tion used to train the discriminator in the detail correction
module is the same as the one used in the last stage of the
main module.
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where S′ is a given text description randomly sampled from
the dataset. The unconditional adversarial loss determines
whether the given image is real, and the conditional adver-
sarial loss reflects the semantic similarity between images
and texts.
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Figure 2. The architecture of ManiGAN. ACM denotes the text-image affine combination module. Red dashed box indicates the architecture
of the detail correction module.
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Figure 3. Trend of the manipulation results over epoch increases on the CUB dataset.
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Figure 4. Trend of the manipulation results over epoch increases on the COCO dataset.

C. Trend of Manipulation Results

We track the trend of manipulation results over epoch
increases, as shown in Figs. 3 and 4. The original images
are smoothly modified to achieve the best balance between
the generation of new visual attributes (e.g., blue head, blue
wings and yellow belly in Fig. 3, dirt background in Fig. 4)
and the reconstruction of text-irrelevant contents of the orig-
inal images (e.g., the shape of the bird and the background
in Fig. 3, the appearance of zebras in Fig. 4). However,
when the epoch goes larger, the generated visual attributes
(e.g., blue head, blue wings, and yellow belly of the bird,
dirt background of the zebras) aligned with the given text
descriptions are gradually erased, and the synthetic images
become more and more similar to the original images. This

verifies the existence of the trade-off between the genera-
tion of new visual attributes required in the given text de-
scriptions and the reconstruction of text-irrelevant contents
existing in the original images.

D. Additional Comparison Results
In Figs. 5, 6, 7, and 8, we show additional comparison

results between our ManiGAN, SISGAN [2], and TAGAN
[5] on the CUB [7] and COCO [4] datasets. Please watch
the accompanying video for detailed comparison.
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Figure 5. Additional comparison results between ManiGAN, SISGAN, and TAGAN on the CUB bird dataset.
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Figure 6. Additional comparison results between ManiGAN, SISGAN, and TAGAN on the CUB bird dataset.
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Figure 7. Additional comparison results between ManiGAN, SISGAN, and TAGAN on the COCO dataset.
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Figure 8. Additional comparison results between ManiGAN, SISGAN, and TAGAN on the COCO dataset.
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