
Supplementary Material: MixNMatch: Multifactor Disentanglement and

Encoding for Conditional Image Generation

Yuheng Li Krishna Kumar Singh Utkarsh Ojha Yong Jae Lee

University of California, Davis

In this supplementary material, we first introduce some

key points of our training details. Next, we elaborate on

our model’s feature mode (second stage) training. Then, in

Sec. 3, we discuss the usage of bounding box annotations

during training for background generation. In Sec. 4, we

provide details on texture disentanglement, and report shape

and texture disentanglement results for all 15 keypoints for

all methods. Finally, we show more qualitative disentan-

glement results and discuss the video clips which further

demonstrate the disentanglement ability of our model.

1. Training details

We optimize our model using Adam with learning rate

0.0002, β1 = 0.5, β2 = 0.999 for 600 epochs. Follow-

ing FineGAN [5], we crop all the images to 1.5× of their

available bounding boxes.

As mentioned in the main paper, in our code mode (first

stage) training, we use four paired discriminators to help

encoders learn disentanglement. For each paired discrimi-

nator, there are two initial branches of convolution blocks

which process the code and image, respectively. Then, their

outputs are concatenated and fed into a series of convolution

blocks to predict whether the input image-code pair is real

or fake (during training, we set the image-code pair from

encoders as real, and the image-code pair from generator

as fake). In the code branch, we add Gaussian noise af-

ter each activation layer in order to avoid the discriminator

from trivially recognizing that the one hot code in image-

code pair from generator is a fake (since the encoded code

from the encoders will never be one hot). Also, we update

the paired discriminator using Wasserstein GAN [1] with

gradient penalty.

2. Feature mode details

In feature mode (second stage) training we only train

a shape and pose feature extractor S. Concretely, we fix

the trained code mode (first stage) MixNMatch generator,

and treat it as a real feature distribution provider. We then

randomly sample p and z codes from their prior code dis-

tribution (categorical and normal distribution, respectively)

and also predict p and z using their trained encoders on

randomly sampled real images with equal probability. We

feed these codes into the fixed parent stage generator to get

an intermediate feature φ(p, z) (we use the feature Fp out-

putted from generator Gp according to [5]). As this feature

is the output of the parent stage generator, it only contains

shape and pose information. Thus, by applying an adversar-

ial loss on the feature extractor S to match the distribution

of φ(p, z), we can extract shape and pose information from

real images x.

As mentioned in the main paper, we use a patch discrim-

inator for this feature mode (second stage) training; specif-

ically, we use a patch size of 34 x 34. Finally, in order to

preserve instance-specific shape and pose details, we also

generate fake images using our pretrained MixNMatch gen-

erator and compute their φ(p, z). Then, for each fake image,

we input it into the feature extractor S, and apply an L1 loss

between the resulting feature and its φ(p, z). In summary,

our loss to train S is:

LS = Ladv + LL1 (1)

where Ladv = min
S

max
DS

Eφ(p,z)[log(DS(φ(p, z)))] +

Ex[log(1 − DS(S(x)))] and LL1 = |S(G(b, c, p, z)) −
φ(p, z)|. Here DS is the feature discriminator.

3. Background modeling

As mentioned in the main paper, we only use bounding

box annotations during training to model the background.

Since we do not have any background training images with-

out the object-of-interest (e.g., trees without bird), for each

training image, we treat patches that are completely outside

of the bounding box annotated (object) region as being the

“real” background patches. We then train the background

generator Gb to generate realistic background images, by

applying a patch-level background discriminator Db using

the adversarial loss, following [5].

Once our model is trained, we do not need any bounding

box annotations for image generation.



Deforming AE [4] SC-GAN [3] FineGAN [5] MixNMatch (c) MixNMatch (f)

shape texture shape texture shape texture shape texture shape texture

back 75.08 0.816 27.60 0.679 16.69 0.637 16.52 0.561 13.92 0.584

beak 62.54 0.707 32.92 0.565 21.16 0.599 21.38 0.509 12.84 0.526

belly 61.58 0.873 30.86 0.778 19.56 0.683 19.51 0.633 16.92 0.656

breast 66.93 0.859 33.36 0.757 18.81 0.669 18.25 0.626 15.83 0.648

crown 81.75 0.773 32.52 0.631 19.31 0.614 18.90 0.550 12.61 0.564

forehead 70.64 0.759 29.29 0.572 18.67 0.570 18.84 0.495 11.48 0.510

left eye 66.13 0.809 27.84 0.586 17.87 0.540 17.47 0.481 12.22 0.508

left leg 70.32 0.800 34.53 0.573 26.03 0.585 24.78 0.508 22.42 0.537

left wing 68.53 0.809 34.98 0.714 25.40 0.609 24.48 0.572 22.76 0.612

nape 80.72 0.807 32.05 0.675 18.27 0.613 17.97 0.566 13.76 0.589

right eye 54.14 0.810 28.53 0.587 17.66 0.533 17.21 0.478 12.01 0.510

right leg 74.57 0.773 33.23 0.569 24.50 0.583 24.20 0.505 22.36 0.535

right wing 68.99 0.859 32.28 0.698 23.43 0.592 22.84 0.561 20.00 0.598

tail 67.42 0.635 42.52 0.591 28.97 0.617 27.52 0.533 22.03 0.551

throat 80.34 0.792 33.05 0.641 19.29 0.596 18.70 0.527 13.24 0.554

mean 69.98 0.792 32.37 0.641 21.04 0.602 20.57 0.540 16.29 0.565

Table 1: Shape & texture disentanglement. MixNMatch outperforms strong baselines in terms of both shape or texture

disentanglement for all keypoints. (c) is code mode, (f) is feature mode.

4. Shape & texture disentanglement evaluation

We first elaborate on how we evaluate texture disentan-

glement in Sec. 4.2 of the main paper. Recall that our goal

is to take texture and background (codes c, b) from image

A, shape and pose (codes p, z) from image B to generate

new image C. In order to measure how well texture infor-

mation is disentangled and preserved in generated image C,

we first calculate 50 RGB cluster centers among 50,000 ran-

domly sampled pixels from 1000 images (50 pixels per im-

age) from the CUB dataset [6]. We then fire our pretrained

keypoint detector, and crop a 16x16 patch centered on each

keypoint from images A and C. For each patch, we compute

its histogram representation by assigning each pixel to one

of the color centers. Finally, we calculate the χ2-distance

between the L1-normalized color histograms of the patch in

image A and corresponding patch in image C. Since images

A and B can have different poses and hence occluded parts,

we only consider keypoints visible in both images.

Next, in Table 1, we evaluate shape and texture disentan-

glement for all 15 keypoints. MixNMatch consistently out-

performs the baselines for all keypoints. Our feature mode

has the best performance for shape disentanglement due to

its ability of preserving instance-specific shape and pose de-

tails. Our code mode model has the best performance for

the texture disentanglement. One reason that the feature

mode texture disentanglement result is slightly worse than

that of code mode is because MixNMatch in feature mode

can sometimes generate suboptimal masks (due to very sim-

ilar background and object texture in the shape and pose ref-

erence images), leading to incomplete image generations.

5. Additional results

In Fig. 1 we encode the z, b, p, c codes from the two real

images (first and last columns), linearly interpolate each

code, and generate the interpolated images. MixNMatch

produces perceptually smooth transitions for each factor,

which again suggests that it has learned a highly disentan-

gled latent space [2].

Figs. 2, 3, and 4 show additional disentanglement results

of varying each factor for CUB, Dogs and Cars, respec-

tively. These results supplement Fig. 4 from the main paper.

In each sub-figure, images in the red boxes are real and we

only change one factor indicated in the top left corner for

generating the new images.

6. Video results

Finally, we include two videos demonstrating the disen-

tanglement learned by MixNMatch. In MixNMatch.mp4,

the four reference images on the top are real images which

provide the four factors (background, shape, texture, and

pose, respectively). The generated image is shown at the

bottom. Each time we change different real reference im-

age(s) and smoothly translate the corresponding factor.

We also animate an object in a still image according to

the movement of a different object from a reference video.

In the two img2gif files, the frames from the reference video

on the top is used to extract the z vector to control object

pose and location. On the left, we have a reference image

from which shape, background, and texture (p, b, c) infor-

mation are extracted. These factors are combined by MixN-

Match to generate the new images at the bottom.



Figure 1: Latent code interpolation. Images in the red

boxes are real, and intermediate images are generated by

linearly interpolating codes predicted by our encoders.

Notice how our generated bird follows the pose of the

reference video bird well – e.g., it turns around and lifts

its head at the end. These results clearly indicate that our

model can correctly disentangle pose information from the

real images. Since MixNMatch is not trained on any video

data and does not use any temporal information, the gen-

erated video can be a bit sensitive and unstable in terms of

the bird’s shape/size. Still, overall, each generated frame

captures the factors from the respective image/video-frame

very well to produce a realistic image with the correspond-

ing properties.

References

[1] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent

Dumoulin, and Aaron C Courville. Improved training of

wasserstein gans. In NeurIPS, 2017.

[2] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks. In

CVPR, 2019.

[3] Hadi Kazemi, Seyed Mehdi Iranmanesh, and Nasser M.

Nasrabadi. Style and content disentanglement in generative

adversarial networks. In WACV, 2018.

[4] Zhixin Shu, Mihir Sahasrabudhe, Riza Alp Güler, Dimitris

Samaras, Nikos Paragios, and Iasonas Kokkinos. Deform-

ing autoencoders: Unsupervised disentangling of shape and

appearance. In ECCV, 2018.

[5] Krishna Kumar Singh, Utkarsh Ojha, and Yong Jae Lee. Fine-

GAN: Unsupervised hierarchical disentanglement for fine-

grained object generation and discovery. In CVPR, 2019.

[6] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-

ona, and Serge Belongie. The Caltech-UCSD Birds-200-2011

Dataset. Technical Report CNS-TR-2011-001, 2011.



b,p,c

(a) Varying z (pose)

c
z,b,p

(b) Varying b (background)

z,p,c

(c) Varying c (texture)

p
z,b,c

(d) Vary p (shape)

z b

Figure 2: Varying a single factor. Real images are indicated with red boxes. For (a-d), the reference images on the left/top

provide three/one factors. The center 5x5 images are generations.



b,p,c
z

c
z,b,p

z,p,c
b

z,b,c
p

(b) Varying b (background)

(c) Varying c (texture) (d) Vary p (shape)

(a) Varying z (pose)

Figure 3: Varying a single factor. Real images are indicated with red boxes. For (a-d), the reference images on the left/top

provide three/one factors. The center 5x5 images are generations.



b,p,c
z

(d) Vary p (shape)

z,b,c
c

z,b,p

(c) Varying c (texture)

b
z,p,c

(b) Varying b (background)(a) Varying z (pose)

p

Figure 4: Varying a single factor. Real images are indicated with red boxes. For (a-d), the reference images on the left/top

provide three/one factors. The center 5x5 images are generations.


