
Overcoming Classifier Imbalance for Long-tail Object Detection
with Balanced Group Softmax – Supplementary Material

Yu Li1,2,3, Tao Wang3,4, Bingyi Kang3, †Sheng Tang1,2, Chunfeng Wang2, Jintao Li1,2, Jiashi Feng3

1Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China

3Department of Electrical and Computer Engineering, National University of Singapore, Singapore
4Institute of Data Science, National University of Singapore, Singapore

{liyu,ts,jtli}@ict.ac.cn,twangnh@gmail.com,kang@u.nus.edu,
wangchunfeng14@mails.ucas.ac.cn,elefjia@nus.edu.sg

1. Implementation details
1.1. Experiment setup

Our implementations are based on the MMDetection
toolbox [1] and Pytorch [8]. All the models are trained
with 8 V100 GPUs, with a batch size of 2 per GPU, except
for HTC models (1 image per GPU). We use SGD opti-
mizer with learning rate = 0.01, and decays twice at the 8th
and 11th epochs with factor = 0.1. Weight decay = 0.0001.
Learning rate warm-up are utilized. All Ours models are
initialized with their corresponding baseline models that di-
rectly trained on LVIS with softmax, and only the last FC
layer is trained of another 12 epochs, with learning rate =
0.01, and decays twice at the 8th and 11th epochs with fac-
tor = 0.1. All other parameters are frozen.

1.2. Transferred methods

Here, we elaborate on the detailed implementation for
transferred long-tail image classification methods in Table
1 of the main text.

Repeat factor sampling (RFS) RFS [7] is applied to
LVIS instance segmentation in [3]. It increases the sam-
pling rate for tail class instances by oversampling images
containing these categories. We implement RFS with its
best practice settings given by [3] with t = 0.001.

Re-weight Re-weight is a category-level cost sensitive
learning method. Motivated by [2], we re-weight losses of
different categories according to their corresponding num-
ber of training instances. We calculate {αj = 1/N (j)|j ∈
[1, 2, ..., C]}, where N (j) denotes the number of instance
for category j. We normalize αj by dividing the mean of all
α, namely µα and cap their values between 0.01 and 5. α0 is
set to 1 for background class. The model (6) and (7) are both

Figure 1. Settings we tried for [2] and [4].

initialized with model (1). Model (6) fine-tunes all param-
eters in the network except for Conv1 and Conv2. Model
(7) only fine-tunes the last fully connected layer, namelyW
and b in Sec.3.1 in the main text, and β is set to 0.999.

Fig.1 left shows more settings we have tried for loss re-
weighting. we tried [2]’s best practice {β=0.999, focal,
γ=0.5} by setting #bg=3×#fg, but only got 14.57% mAP.
{β=0.999, softmax}=23.07% indicates softmax works bet-
ter for Faster R-CNN. So our (6) in Tab.1 are improved ver-
sion of {β=1, softmax} with weights truncated to [0.01,5].
We further try to add weight truncation to β={0.9, 0.99,
0.999}, loss={softmax, focal}, and set wbg=1, γ=2 (loss
for γ=0.5 is too small), and finally found that {β=1, soft-
max, truncated} (model 7) works best.

Focal loss Focal loss [5] re-weights the cost at image-
level for classification. We directly apply Sigmoid focal loss
at proposal-level. Similar to models (6) and (7), models (8)
and (9) are initialized with model (1). Then we finetune the
whole backbone and classifier (W, b) respectively.

Nearest class mean classifier (NCM) NCM is another
commonly used approach that first computes the mean fea-
ture for each class on training set. During inference, 1-NN
algorithm is applied with cosine similarity on L2 normal-

1



ID Mode Part mAP AP1 AP2 AP3 AP4 APr APc APf

(1) train fc-cls 23.79 8.16 24.42 23.35 29.26 14.36 23.04 28.50

(2) train head 21.18 9.34 21.32 20.94 25.69 12.39 20.67 25.31

(3) tune head 23.88 8.90 23.96 23.78 29.44 14.19 23.08 28.75

(4) tune all 24.02 8.91 24.86 23.49 29.06 14.81 23.36 28.52

Table 1. Different ways to train models. Mode “train” means train
from random initialization. Mode “tune” means finetune from
trained model (1). Part fc-cls, head, and all indicate the last classi-
fication FC layer, the whole classification head (2FC+fc-cls), and
the whole backbone except for Conv1 and Conv2. β is set to 1
here so that the results are lower than that in the main paper where
β = 8.

ized mean features [4, 9]. Thus, for object detection, with
the trained Faster R-CNN model (1), we first calculate the
mean feature for proposals of each class on training set ex-
cept for background class. At inference phase, features for
all the proposals are extracted. We then calculate cosine
similarity of all the proposal features with the class cen-
ters. We apply softmax over similarities of all categories
to get a probability vector pn for normal classes. To rec-
ognize background proposals we directly take the probabil-
ity p0 of background class from model (1), and update pn
with pn × (1 − p0). We try both FC feature just before
classier (model (10)), and Conv feature extracted by ROI-
align (model (11)) as proposal features.

τ -normalization τ -normalization [4] directly scale the
classifier weights W = {wj} by w̃i = wi

‖wi‖τ , where
τ ∈ (0, 1) and ‖ · ‖ denotes L2 norm. It achieves state-
of-the-art performance on long-tail classification [4]. For
model (13), we first obtain results from both the original
model and the τ -normed model. The original model is good
at categorizing background. Thus, if the proposal is catego-
rized to background by the original model, we select the
results of the original model for this proposal. Otherwise,
the τ -norm results will be selected. In spite of this, we de-
signed multiple ways to deal with bg (background class)
(Fig 1 red bars), and found the above way perform best. We
also searched τ value on val set, and found τ=1 is the best
(Fig 1 right).

2. How to train our model
There are several options to train a model with our pro-

posed BAGS module. As shown in Tab.1, we try differ-
ent settings with β = 1. Since adding categories others
changes the dimension of classification outputs, we need to
randomly initialize the classifier weights W and bias b. So
for model (1), following [4] to decouple feature learning
and classifier, we fix all the parameters for feature extrac-

tion and only train the classifier with parameters W and b.
For model (2), we fix the backbone parameters and train the
whole classification head together (2 FC and W, b). It is
worth noticing that the 2 FC layers are initialized by model
(1), while W, b are randomly initialized. This drops mAP
by 2.6%, which may be caused by the inconsistent initial-
ization of feature and classifier. Therefore, we try to train
W and b first with settings for model (1), and fine-tune the
classification head (model (3)) and all backbones except for
Conv1 and Conv2 (model (4)) respectively. Fine-tuning im-
proves mAP slightly. However, taking the extra training
time into consideration, we choose to take the setting of
model (1) to directly train parameters for classifier only in
all the other experiments.

3. Comparison with winners of LVIS 2019
Since the evaluation server for LVIS test set is closed,

all results in this paper are obtained on val set. There
are two winners: lvlvisis and strangeturtle. We compared
with lvlvisis in Tab.3 based on their report [11], and our
results surpass theirs largely. For strangeturtle, their Equal-
ization Loss [10] (released on 12/11/2019) replaces soft-
max with sigmoid for classification and blocks some back-
propagation for tail classes. With Mask R-CNN R50 base-
line (mAP 20.68%), Equalization Loss achieves 23.90%
with COCO pre-training (vs 26.25% of ours). Our method
performs much better on tail classes (APr 11.70% [10] vs
17.97% ours). They also tried to decrease the suppres-
sion effect from head over tail classes, but using sigmoid
completely discards all suppression among categories, even
though some of them are useful for suppressing false posi-
tives. Without bells and whistles, our method outperforms
both winners on val set.

4. Results on COCO-LT
To further verify the generalization ability of our BAGS,

we construct a long-tail distribution dataset COCO-LT by
sampling images and annotations from COCO [6] train
2017 split.

4.1. Dataset construction

To get a similar long-tail data distribution as LVIS, we
first sort all categories of LVIS and COCO by their corre-
sponding number of training instances. As shown in Fig. 2,
we align 80 categories of COCO with 1230 categories of
LVIS, and set the target training instance number per cate-
gory in COCO as the training instance number of its corre-
sponding category in LVIS. Then, we sample target number
of instances for each COCO category. We make use of as
many instances in a sampled image as possible. Training
instances in a sampled image will only be ignored when
there are plenty of instances belonging to that category.

2

https://www.lvisdataset.org/challenge


Figure 2. We align 80 categories of COCO with 1230 categories
of LVIS, and sample corresponding number of instances for each
COCO category.

mAP AP1 AP2 AP3 AP4

Faster R-CNN 20.3 0.1 12.9 24.3 26.7

Ours 22.5 13.0 18.6 24.1 26.4

Mask R-CNN bbox 19.1 0.0 11.1 22.9 26.4

Ours 21.5 13.4 17.7 22.5 26.0

Mask R-CNN segm 18.0 0.0 11.5 21.8 23.3

Ours 20.3 3.4 18.9 21.7 23.0

Table 2. Results on COCO-LT dataset. ResNet50-FPN backbone
are used for both Faster R-CNN and Mask R-CNN.

In this way, we sample a subset of COCO that follows
long-tail distribution just like LVIS. COCO-LT only con-
tains 9100 training images of 80 categories, which includes
64504 training instances. For validation, we use the same
validation set as COCO val 2017 split, which includes 5000
images.

4.2. Main results

We compare with Faster R-CNN and Mask R-CNN
(R50-FPN backbone) on the above COCO-LT dataset. The
results are shown in Tab. 2. Since the number of training
images is small, we initialize baseline models with model
trained on LVIS. As we can see, our models introduce
more than 2% improvements on mAP of both bounding box
and mask. Importantly, it gains large improvement on tail
classes.

References
[1] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu

Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019. 1

[2] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge
Belongie. Class-balanced loss based on effective number of
samples. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 9268–9277,
2019. 1

[3] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A
dataset for large vocabulary instance segmentation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5356–5364, 2019. 1

[4] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan,
Albert Gordo, Jiashi Feng, and Yannis Kalantidis. Decou-
pling representation and classifier for long-tailed recogni-
tion. arXiv preprint arXiv:1910.09217, 2019. 1, 2

[5] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 1

[6] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 2

[7] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,
Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe,
and Laurens van der Maaten. Exploring the limits of weakly
supervised pretraining. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 181–196, 2018.
1

[8] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in PyTorch. In NIPS Autodiff Workshop, 2017.
1

[9] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypi-
cal networks for few-shot learning. In Advances in Neural
Information Processing Systems, pages 4077–4087, 2017. 2

[10] Jingru Tan, Changbao Wang, Quanquan Li, and Junjie Yan.
Equalization loss for large vocabulary instance segmenta-
tion. arXiv preprint arXiv:1911.04692, 2019. 2

[11] Tao Wang, Yu Li, Bingyi Kang, Junnan Li, Jun Hao Liew,
Sheng Tang, Steven Hoi, and Jiashi Feng. Classification cal-
ibration for long-tail instance segmentation. arXiv preprint
arXiv:1910.13081, 2019. 2

3


