Supplementary Material

A. Network Architecture

The detailed architecture of our model is shown in Table 4. The upper half of the table is the architecture of the whole
RFR-Net. The bottom half is the architecture of the RFR Module. In specific, the meanings of the table are in the first row.
Input_Feat tells the source of the feature. In_Size and Out_Size indicate the sizes of the feature maps after they are processed
and Ori means the size of the original input. K_Size means the kernel size of the operators. Stride means the stride of the
operators, which will be omitted if this parameter is not applicable. Num_Chan means the channel number of the output
feature map. BN means whether batch normalization layer is used after the operator. Act_Fun means the non-linear function
after the layer. Note that the RFR module actually has a recurrent design that feeds the feature map from layer Deconv3”
into "PartialConv1”. Except for the first time recurrence, the input mask for "PartialConv1” comes from “PartialConv2” in
the last recurrence. All leaky relu layers have a negative slope of 0.2.

Connection to Partial Convolution U-Net: The key component of the RFR-Net is the RFR module with a recurrent design
that progressively recovers the damaged deep feature maps. To detect the area to be processed in next recurrence for RFR,
there are several options, such as “Partial Convolution”, “Gated Convolution” and “Learnable Attention Maps”. For simplic-
ity, we used the layer and loss functions from Partial Convolution U-Net. However, the inpainting process of our RFR-Net
differs largely from Partial Convolution U-Net. First, RFR-Net aims to generate high quality features in each recurrence
so that the subsequent recurrences can benefit from them while the architecture from Partial Convolution U-Net propagates
contents to the holes aggressively in each convolution layer, leading to information distortion during the process. Second,
RFR-Net deploys shared parameters in each recurrence under a recurrent architecture while Partial Convolution U-Net cal-
culates each step with different parameters under a feedforward architecture. Third, RFR-Net merges features generated
from different recurrences to stabilize backward propagation by eliminating the gradient vanishing problem, while Partial

RFR-Net Architecture

Module Name Input_Feat In_Size K.Size Stride Num_-Chan OutSize BN Act_Func
PartialConvO Img_Masked Ori 7 2 64 Ori/2 T ReLU
PartialConv1 F_Pconv0 Ori 7 1 64 Ori/2 T ReLLU
RFR Module F_Pconvl Ori/2 64 Ori/2 F None

DeConv4 F_RFR Ori/2 4 2 64 Ori T Leaky_ReLU
PartialConv4 | Cat(Img_Masked, F_Deconv4) Ori 3 1 32 Ori F Leaky_ReLU
Conv9 F_Pconv3 Ori 3 1 32 Ori T Leaky_ReLU
Conl0 F_Conv9 Ori 3 1 32 Ori T Leaky_ReLU

Output_Conv Cat(F_Pconv3, F_Convll1) Ori 3 1 3 Ori F None

RFR Module Architecture

Module Name Input_Feat In_Size K_Size Stride Num_Chan Out_Size BN Act_Func
PartialConv?2 F_Pconvl Ori/2 7 1 64 Ori/2 F None
PartialConv3 F_Pconv2 Ori/2 7 1 64 Ori/2 T RelLU

Convl F_Pconv3 Ori/2 3 2 128 Ori/4 T ReLLU
Conv2 F_Convl Ori/4 3 2 256 Ori/8 T ReLLU
Conv3 F_Conv2 Ori/8 3 2 512 Ori/16 T ReLLU
Conv4 F_Conv3 Ori/16 3 1 512 Ori/16 T ReLU
Conv5 F_Conv4 Ori/16 3 1 512 Ori/16 T ReLLU
Conv6 F_Conv5 Ori/16 3 1 512 Ori/16 T ReLLU
Conv7 Cat(F_Conv6, F_Conv5) Ori/16 3 1 512 Ori/16 T Leaky ReLLU
Conv8 Cat(F_Conv7, F_Conv4) Ori/16 3 1 512 Ori/16 T Leaky_ReLU
KCA F_Conv8 Ori/16 512 Ori/16 F None
DeConvl Cat(F_KCA, F_Conv3) Ori/16 4 2 256 Ori/8 T Leaky_ReLU
DeConv2 Cat(F_Deconvl, F_Conv2) Ori/8 4 2 128 Ori/4 T Leaky_ReLU
DeConv3 Cat(F_Deconv2, F_Convl) Ori/4 4 2 64 Ori/2 T Leaky_ReLU
Feature Merge All F_Deconv3 Ori/2 64 Ori/2 F None

Table 4. The architecture of the RFR-Net and RFR module respectively.

Method SSIM* PSNR* Mean [T Memory Usage
Mask Ratio | 0.1-0.2 0.3-04 0.5-0.6 | 0.1-0.2 0.3-04 0.5-0.6 | 0.1-0.2 0.3-04 0.5-0.6 ANY
DownSamp 0 Unable to train Unable to train Unable to train 1657M
DownSamp 1 | 0955 0.860 0.673 | 31.72 2638 2229 | 0.0110 0.0279 0.0558 1122M
DownSamp?2 | 0949 0.845 0.650 | 30.99 25.78 21.86 | 0.0118 0.0296 0.0582 863M
DownSamp 3 | 0.948 0.839 0.635 | 3093 2564 21.70 | 0.0129 0.0303 0.0600 834M

Table 5. Comparison between different places to put the module. *Higher is better. fLower is better.

h i
Masked Image

L i
Average Merge

No Merge Adaptive Merge

Figure 8. Different methods for feature merging in RFR module. From the left to the right are: (a) Input, (b) No Merging, (c) Average
Merging, (d) Adaptive Merging.

Convolution U-Net does not have the gradient vanishing problem. Finally, we designed KCA to search for feature globally
while Partial Convolution U-Net only captures information locally.

The design of Feature Reasoning module: The module aims to partly recover the masked region in deep feature maps.
Therefore, we need to extract information from the already known features and estimate new contents. In this module, such
new contents are produced in a feature reconstruction style with additional consideration. According to this objective, we
develop our architecture based on the standard feature extraction and reconstruction technique, i.e., the encoder-and-decoder
design.

Computational Complexity: The recurrent design of our RFR module increases the computational complexity compared
to its non-recurrent version. However, since the RFR module is implemented for down-sampled feature maps (with much
smaller size), the additional computation cost for each extra IterNum during inference is very limited (~8ms and ~20mb for
each IterNum).

B. More Ablation Studies

In this section of the supplementary material, we will show more ablation study about the RFR module. In specific, we first
show that the RFR module can be installed in any part of an existing network and the computational cost can be controlled.
Then we show that the RFR module can benefit a network whose input and output is not represented in the same space.

B.1. Moving the RFR Module

In this section, we will test how will the network’s performance change if we move the RFR module up and down in the
network.

In specific, we will move the RFR module up and down in the network by adding or modifying the encoding and decoding
layers to show that the RFR module can be flexibly installed into any part of a network. We tested four different models,
which are using the RFR without downsampling layers (Modifying “PartialConv0” and "DeConv4” in the Table 4), using
the RFR after downsampling for once (original design in Table 4), using the RFR after downsampling for twice (adding
extra encoding and decoding layers before and after the RFR module respectively) and using the RFR after downsampling
for three times. The RFR modules for each experiment remain the same to address any possible influence, which means
the input feature maps all have 64 channels. Attention module is removed from all models we tested here. All results are
from models trained on Paris StreetView dataset. For no-downsampling case, we are not able to train the network due to its
unacceptably high computational cost and we only conduct memory cost experiment. By analyzing the Table 5, we notice
that by moving the RFR module deeper, the computational cost is significantly reduced while the performances are only
affected little. This further shows the superiority of the RFR module and the potential of the RFR-Net.

B.2. Effect of Feature Merging

Fig. 8 compares of different feature merging approaches in the RFR module on Paris StreetView. If only the last feature
map is used as output (Fig. 8 (b)) for feature merging, the texture is blurred and inadequate. This is because during the feature
reasoning process, some feature generated in earlier recurrences might be damaged in order to further recover the hole region.
Further, when we replace our adaptive merging (Fig. 8 (d)) with average merging (Fig. 8 (c)), the restored details of average
merging are worse than those of adaptive merging. The reason is that when performing average merging, the feature values
in the hole region are smoothed partly, as we explained in Sec. 3.1.3. This part demonstrates the advantage of the adaptive
feature merging scheme we proposed.

B.3. RFR Module For Structure Estimation

In this section, we will show that the RFR module can also boost the performance of a multi-stage method’s subnetwork.
In specific, the multi-stage method we choose is Edge-Connect, which first uses a network to reconstruct the boundary from
the corrupted image and use the boundary to guide image inpainting. In this case, the each single network has different input
and output space and therefore all existing progressive methods are not feasible. We replace the 8 residual blocks in the
first network of the model with the RFR module and compare the results. The training settings are kept the same as that
in the original paper of Edge-Connect. In Fig. 9, (a) and (d) are the masked input images. (b) and (e) are the results from
Edge-Connect method’s structure generator. (c) and (f) are the results from the RFR structure generator. The results from
the RFR module are significantly better than the original edge generator. The results from this section also demonstrates the
potential applications of the RFR net on other tasks where the input and output are not in the same representation space and
some parts of the network include a encoder-decoder design architecture.

(a) (b) (© () (e) ®
Figure 9. RFR module for structure estimation.

C. More Results

In this part, more visual comparisons and results are exhibited. In the first part, visual comparisons with state-of-the-art
methods on CelebA and Paris StreetView datasets, which are omitted in the main text of the paper due to the space limitation.
Then we show more visual results on three datasets with ground truth images. All these results demonstrates the effectiveness
of our proposed methods.

C.1. More Comparisons

In this section, we show more comparison results. The results are on Paris StreetView and CelebA datasets. Our RFR-Net
exhibits less boundary artifacts and much more explicit generated content.

() (b) (© (@ (e) ®

Figure 10. More comparison results on Paris Street View and CelebA datasets. Our model stably produces well-structured results, even if
the holes are large and challenging. From the left to the right are: (a) Input, (b) Ground Truth, (c) GatedConv, (d) PConv, (¢) EdgeConnect
and (f) Our RFR-Net.

C.2. More Visual Results

() (b) (© (@ (e) ®

Figure 11. More visual results. Our results have both coherent structures and plausible details. From the left to the right are: (a) Input, (b)
Our RFR-Net, (c¢) Ground Truth, (d) Input, (¢) Our RFR-Net and (f) Ground Truth.

