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1. Discussion
1.1. Greedy Methods in NAS

The idea of incorporating greedy algorithms into NAS
has been explored in several works. PNAS [7] proposes
a sequential model-based optimization (SMBO) approach
to accelerate the search for CNN architectures. They start
from a simple search space and a learn a predictor func-
tion. Then they greedily grow the search space by predict-
ing scores of candidates cells using the learned predictor
function. GNAS [4] learns a global tree-like architecture for
multi-attribute learning by iteratively updating layer-wise
local architectures in a greedy manner. P-DARTS [1] can
also be regarded as a greedy approach, in which they bridge
the depth gap between search and evaluation by gradually
increasing the depth of the search networks while shrinking
the number of candidate operations.

1.2. Selection Criteria and Hyper-parameters

Edge Importance and Selection Certainty. Edge impor-
tance and selection certainty are combined into a single cri-
terion, since the algorithm will be agnostic to the selection
distribution of an edge, if we only consider edge impor-
tance. In this case, an edge may be selected with a sub-
optimal operation at early epochs. On the other hand, we
need to select 8 out of 14 edges in a DAG with 4 inter-
mediate nodes for a fair comparison with DARTS. Only
considering selection certainty may fail to select the opti-
mal 8 edges, since an edge with a high selection certainty
may have a high weight on Zero operation (low edge impor-
tance).

Choices of Hyper-parameters. Three extra parameters are
introduced in SGAS: (1) length of warm-up phase (2) inter-
val of greedy decisions (3) history window size for Cri.2.
We provide a discussion on the default choices of them:
(1) Since the softmax weights of operations are initialized
under a uniform distribution, choosing an operation for an
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edge after a short period of warming up leads to stable re-
sults. We simply set the length of the warm-up phase to
9 epochs so that the first greedy decision will be made at
the 10th epoch. (2) For CNN experiments, the interval be-
tween greedy decisions is chosen to be 5. Since designing a
normal cell with 4 intermediate nodes needs to select 8 out
of 14 edges (8 decisions to be made). For a fair compar-
ison to our baseline DARTS, we want the search phase to
last up to 50 epochs, which is the length of search epochs in
DARTS. For GCN architectures, in order to learn a compact
network, we search a normal cell with 3 intermediate nodes.
Thus, we have 6 decisions to make (6 out of 9 edges). Sim-
ilarly, to keep the length of the search phase less than 50
epochs, we set the interval between greedy decisions to be
7. (3) The history window size for Cri.2 is always set as
4, which is simply chosen to be slightly smaller than the
interval between greedy decisions.
Ablation Study on Hyper-parameters. In order to better
understand the effects of the choices of hyper-parameters,
we conduct ablation studies on interval of greedy decisions
T and history window size K for Cri.2 on CIFAR-10 in Ta-
ble 1. The default values of T and K are 5 and 4 respec-
tively. We find that larger T and K stabilize the search and
produce standard deviations in the test error. The test error
only has a standard deviation as 0.08 when T = 7. When
T = 3, the average test error increases significantly from
2.67% to 2.86%. We also find K is less sensitive than T .

2. Experimental Details
2.1. GCN Experiments

GCN operators. Similar as the search for CNN, SGAS se-
lects one operation from a candidate operation search space
for each edge in the DAG. We choose the following 10 oper-
ations as our candidate operations: conv-1×1, MRConv [6],
EdgeConv [10], GAT [9], SemiGCN [5], GIN [11], SAGE
[3], RelSAGE, skip-connect, and zero operation. conv-1×1
is a basic convolution operation without aggregating infor-
mation from neighbors, which is similar to PointNet [8].
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Avg. Best
T K Params (M) Test Err.(%) Params (M) Test Err.(%)

5 4 3.91±0.22 2.67±0.21 4.09 2.44

3 4 4.09±0.24 2.86±0.12 4.39 2.69
7 4 3.66±0.16 2.65±0.08 3.68 2.54

5 2 3.87±0.20 2.73±0.16 3.94 2.51
5 6 3.93±0.26 2.67±0.17 3.70 2.47

Table 1. Ablation study on interval of greedy decisions T and
history window size K for Cri.2 on CIFAR-10. We use SGAS
(Cri.2) as our search method. We report the average and best per-
formance of searched architectures.

MRConv [6], EdgeConv [10], GAT [9], SemiGCN [5], GIN
[11] and SAGE [3] are widely used GCN operators in the
graph learning domain and the 3D computer vision domain.
RelSAGE is a modified GraphSAGE (SAGE) [3] which
combines the ideas from MRConv [6] and GraphSAGE [3].
Instead of aggregating the node features with its neighbor
features directly, we aggregate the node features with the
difference between the node features and its neighbor fea-
tures:
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layer. N (v) denotes the neighbors of node v. fk is a
max aggregation function and σ is a ReLU activation
function as GraphSAGE [3]. The GCNs operators are
implemented using Pytorch Geometric [2]. We also add
skip-connect (similar as residual graph connections [6])
and zero operation in our search space.

Ablation Study on GCN Cells. We conduct an ablation
study on the parameter size of the best cell searched on PPI
by SGAS (Cri.1 best). Table 2 shows the trade-off between
the parameter size and the final performance. To derive a
compact model, we can use a smaller number of cells or
less channels in the architecture searched by SGAS.

Number of Cells Channel Size Params (M) micro-F1(%)

5 64 0.40 98.894
5 128 1.52 99.369
5 256 5.89 99.429
5 512 23.18 99.462

1 256 1.22 99.157
3 256 3.52 99.418
5 256 5.89 99.429
7 256 8.25 99.433

Table 2. Ablation study on channel size and number of cells
on node classification on PPI. We use SGAS (Cri.1 best), the
best architecture we discovered by using Criterion 1 to conduct
experiments.

2.2. More Details

Cell Visualizations. We visualize the best cells discovered
by SGAS with different criteria (Criterion 1 and Criterion
2) mentioned in the experiment section. Figure 1 shows the
best cells for CNNs on CIFAR-10 and ImageNet. Figure 2
shows the best cells for GCNs on ModelNet-40 and PPI.

Detailed results. Here we provide the detailed results men-
tioned in the experimental section of the paper. In the CNN
experiments, we compare SGAS with DARTS on CIFAR-
10 and ImageNet. We execute the search phase 10 times
for both SGAS (Cri.1 and Cri.2) and DARTS (1st and 2nd
order) to obtain 10 different architectures per method. For
each resulting architecture, we run the evaluation phase and
assign a ranking based on the evaluation accuracy. To mea-
sure the discrepancy between the search and evaluation, we
calculate the Kendall τ correlation between the ranking of
the search phase and the evaluation phase. We show these
results in Table 3 and Table 4 for SGAS, and Table 5 and Ta-
ble 6 for DARTS. For ImageNet, we evaluate the top three
architectures found on CIFAR-10. We show the results in
Table 7 and Table 8 for both Criterion 1 and Criterion 2.

In the GCN experiments, we compare SGAS (Cri.1 and
Cri.2) with a random search baseline on ModelNet and PPI.
Similar as in experiments for CNNs, we conduct the search
phase 10 times for each method. For experiments on Mod-
elNet, we search cells on ModelNet10 and then evaluate the
searched cells on ModelNet40. The results are shown for
Criterion 1, Criterion 2 and random search in Table 9, Ta-
ble 10 and Table 11 respectively. The results on PPI are
presented in Table 12 and Table 13 for each Criterion and
in Table 14 for random search.
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(a) Normal cell of the best model with SGAS Cri. 1 (b) Reduction cell of the best model with SGAS Cri. 1
on CIFAR-10 and ImageNet on CIFAR-10 and ImageNet
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(c) Normal cell of the best model with SGAS Cri. 2 on CIFAR-10 (d) Reduction cell of the best model with SGAS Cri. 2 on CIFAR-10
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(e) Normal cell of the best model with SGAS Cri. 2 on ImageNet (f) Reduction cell of the best model with SGAS Cri. 2 on ImageNet
Figure 1. Best cell architecture for image classification tasks
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Figure 2. Best cell architectures on ModelNet40 and PPI with each Criterion



Experiment Validation error (%) Params (M) Test error (%) Evaluation ranking

Cri.1 CIFAR 1 16.94 3.75 2.44 2
Cri.1 CIFAR 2 17.33 3.73 2.50 3
Cri.1 CIFAR 3 17.90 3.80 2.39 1
Cri.1 CIFAR 4 17.90 3.32 2.63 6
Cri.1 CIFAR 5 17.99 3.45 2.78 8
Cri.1 CIFAR 6 18.43 3.47 2.68 7
Cri.1 CIFAR 7 18.72 3.83 2.51 4
Cri.1 CIFAR 8 19.82 3.66 2.61 5
Cri.1 CIFAR 9 19.93 3.98 3.18 10
Cri.1 CIFAR 10 21.53 3.61 2.87 9

Average 18.65±1.4 3.66±0.2 2.66±0.24 Kendall τ

Best Model 17.90 3.80 2.39 0.56

Table 3. Results of SGAS Criterion 1 on CIFAR-10

Experiment Validation error (%) Params (M) Test error (%) Evaluation ranking

Cri.2 CIFAR 1 16.48 4.14 2.57 4
Cri.2 CIFAR 2 17.26 3.88 2.60 6
Cri.2 CIFAR 3 17.31 4.09 2.44 1
Cri.2 CIFAR 4 17.47 3.91 2.49 2
Cri.2 CIFAR 5 17.53 3.69 2.52 3
Cri.2 CIFAR 6 17.98 3.95 3.12 10
Cri.2 CIFAR 7 18.28 3.69 2.58 5
Cri.2 CIFAR 8 18.28 4.33 2.85 8
Cri.2 CIFAR 9 19.48 3.73 2.85 9
Cri.2 CIFAR 10 19.98 3.68 2.66 7

Average 18.00±1.06 3.91±0.22 2.67±0.21 Kendall τ

Best Model 17.31 4.09 2.44 0.42

Table 4. Results of SGAS Criterion 2 on CIFAR-10

Experiment Validation error (%) Params (M) Test error (%) Evaluation ranking

DARTS 1st CIFAR 1 11.37 3.27 2.83 4
DARTS 1st CIFAR 2 11.45 3.65 2.57 2
DARTS 1st CIFAR 3 11.47 2.29 2.94 7
DARTS 1st CIFAR 4 11.48 2.65 2.96 8
DARTS 1st CIFAR 5 11.65 3.09 2.50 1
DARTS 1st CIFAR 6 11.75 2.86 2.84 5
DARTS 1st CIFAR 7 11.77 2.09 3.06 10
DARTS 1st CIFAR 8 11.81 2.52 3.01 9
DARTS 1st CIFAR 9 11.82 2.65 2.94 6
DARTS 1st CIFAR 10 11.94 3.27 2.82 3

Average 11.65±0.19 2.84±0.49 2.85±0.18 Kendall τ

Best Model 11.65 3.09 2.50 0.16

Table 5. Results of DARTS 1st order on CIFAR-10



Experiment Validation error (%) Params (M) Test error (%) Evaluation ranking

DARTS 2nd CIFAR 1 11.35 2.91 2.96 8
DARTS 2nd CIFAR 2 11.51 2.93 2.73 5
DARTS 2nd CIFAR 3 11.68 2.20 3.01 9
DARTS 2nd CIFAR 4 11.76 2.66 2.75 6
DARTS 2nd CIFAR 5 11.80 3.09 2.72 4
DARTS 2nd CIFAR 6 11.82 3.40 2.62 3
DARTS 2nd CIFAR 7 11.83 2.91 2.82 7
DARTS 2nd CIFAR 8 11.93 3.20 2.51 1
DARTS 2nd CIFAR 9 11.95 2.14 3.48 10
DARTS 2nd CIFAR 10 12.03 2.55 2.62 2

Average 11.77±0.21 2.8±0.41 2.82±0.28 Kendall τ

Best Model 11.93 3.20 2.51 -0.29

Table 6. Results of DARTS 2nd order on CIFAR-10

Experiment Test error top-1 (%) Test error top-5 (%) Params (M) ×+
Cri.1 ImageNet 1 24.47 7.23 5.25 578
Cri.1 ImageNet 2 24.53 7.40 5.23 574
Cri.1 ImageNet 3 24.22 7.25 5.29 585

Average 24.41±0.16 7.29±0.09 5.25±0.03 579
Best Model 24.22 7.25 5.29 585

Table 7. Results of SGAS Criterion 1 on ImageNet. Note that the chosen architectures are the three best ones from the results obtained on
CIFAR-10.

Experiment Test error top-1 (%) Test error top-5 (%) Params (M) ×+
Cri.2 ImageNet 1 24.44 7.41 5.70 621
Cri.2 ImageNet 2 24.13 7.31 5.44 598
Cri.2 ImageNet 3 24.55 7.44 5.20 571

Average 24.38±0.22 7.39±0.07 5.44±0.25 597
Best Model 24.13 7.31 5.44 598

Table 8. Results of SGAS with Criterion 2 on ImageNet. Note that chosen the architectures are the three best ones from the results obtained
on CIFAR-10.

Experiment Params (M) Test OA (%)

Cri.1 ModelNet 1 8.79 92.71
Cri.1 ModelNet 2 9.23 92.83
Cri.1 ModelNet 3 8.79 92.79
Cri.1 ModelNet 4 8.78 92.34
Cri.1 ModelNet 5 8.93 92.79
Cri.1 ModelNet 6 8.19 92.30
Cri.1 ModelNet 7 8.63 92.83
Cri.1 ModelNet 8 8.63 92.71
Cri.1 ModelNet 9 8.63 92.87
Cri.1 ModelNet 10 9.23 92.79

Average 8.78±0.30 92.69±0.20
Best Model 8.63 92.87

Table 9. Results of SGAS with Criterion 1 on ModelNet40. Architectures are formed by stacking 9 cells with 128 channel size.



Experiment Params (M) Test OA (%)

Cri.2 ModelNet 1 8.78 92.91
Cri.2 ModelNet 2 8.78 92.67
Cri.2 ModelNet 3 9.08 92.79
Cri.2 ModelNet 4 8.49 93.23
Cri.2 ModelNet 5 9.08 93.03
Cri.2 ModelNet 6 9.08 93.07
Cri.2 ModelNet 7 8.78 93.11
Cri.2 ModelNet 8 8.63 92.67
Cri.2 ModelNet 9 8.78 92.83
Cri.2 ModelNet 10 9.23 92.95

Average 8.87±0.23 92.93±0.19
Best Model 8.49 93.23

Table 10. Results of SGAS with Criterion 2 on ModelNet40. Architectures are formed by stacking 9 cells with 128 channel size.

Experiment Params (M) Test OA (%)

Random ModelNet 1 9.22 92.79
Random ModelNet 2 8.93 92.67
Random ModelNet 3 9.08 92.71
Random ModelNet 4 8.78 92.46
Random ModelNet 5 8.19 92.79
Random ModelNet 6 8.63 92.54
Random ModelNet 7 8.93 91.94
Random ModelNet 8 8.63 92.99
Random ModelNet 9 8.79 93.15
Random ModelNet 10 8.49 92.46

Average 8.77±0.30 92.65±0.33
Best Model 8.79 93.15

Table 11. Results of random search on ModelNet40. Architectures are formed by stacking 9 cells with 128 channel size.

Experiment Params (M) Test micro-F1 (%)

Cri.1 PPI 1 27.11 99.45
Cri.1 PPI 2 23.18 99.42
Cri.1 PPI 3 25.80 98.91
Cri.1 PPI 4 25.80 99.38
Cri.1 PPI 5 24.49 99.44
Cri.1 PPI 6 29.73 99.44
Cri.1 PPI 7 24.50 99.44
Cri.1 PPI 8 21.87 99.43
Cri.1 PPI 9 24.49 99.44
Cri.1 PPI 10 23.18 99.46

Average 25.01±2.24 99.38±0.17
Best Model 23.18 99.46

Table 12. Results of SGAS with Criterion 1 on PPI.



Experiment Params (M) Test micro-F1 (%)

Cri.2 PPI 1 25.80 99.17
Cri.2 PPI 2 28.42 99.46
Cri.2 PPI 3 20.55 99.40
Cri.2 PPI 4 21.87 99.43
Cri.2 PPI 5 24.49 99.44
Cri.2 PPI 6 28.42 99.43
Cri.2 PPI 7 29.73 99.42
Cri.2 PPI 8 25.80 99.45
Cri.2 PPI 9 28.42 99.44
Cri.2 PPI 10 25.79 99.41

Average 25.93±2.99 99.40±0.09
Best Model 28.42 99.46

Table 13. Results of SGAS with Criterion 2 on PPI.

Experiment Params (M) Test micro-F1 (%)

Random PPI 1 20.57 99.27
Random PPI 2 24.48 99.37
Random PPI 3 24.49 99.40
Random PPI 4 19.24 99.40
Random PPI 5 24.48 99.37
Random PPI 6 21.85 99.36
Random PPI 7 27.11 99.32
Random PPI 8 23.17 99.40
Random PPI 9 24.48 99.39
Random PPI 10 27.11 99.38

Average 23.7±2.56 99.36±0.04
Best Model 23.17 99.40

Table 14. Results of random search on PPI.


