
Single Image Reflection Removal through Cascaded Refinement
(Supplementary Material)

This supplementary material provides more details and

results that were not included in the main text due to the

space limitation. The contents are organized as follows.

• Figure 1 illustates more cascading results. Images in

odd rows show the cascading results of GT , and im-

ages in even rows demonstrate the cascading results of

GR.

• Figure 2 and Figure 3 display the complete overview

of our newly created dataset Nature, except for a few

pictures that may compromise anonymity. The former

are images captured indoors, and the latter are images

captured outdoors.

• More visualization comparisons are demonstrated in

Figure 4 and Figure 5. We compare our IBCLN against

state-of-the-art methods including Zhang et al. [4],

BDN [3], RmNet [2] and ERRNet [1].
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Cascading Results Ground Truth

Figure 1. Visualization of results at different cascading steps of the two sub-networks in the proposed model. The estimates of transmissions

and residual reflections become increasingly more accurate as they progress through the cascade.



Figure 2. Samples from our real world dataset Nature that are captured indoors.



Figure 3. Samples from our real world dataset Nature that are captured outdoors.
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Figure 4. Visual comparison among state-of-the-art approaches and our IBCLN method on more real-world images.
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Figure 5. Visual comparison among state-of-the-art approaches and our IBCLN method on more real-world images.


