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1. Real Data Evaluation with Ground Truth
We first present quantitative comparisons and then more

qualitative ones on real data. We use four objects (mouse,
dog, pig and monkey). All objects are reconstructed from
10 views under natural environment maps, except monkey,
which needs 12 views since the shape is much more complex.
To obtain the ground truth geometry, we paint each object
with diffuse white paint and scan using a high-quality 3D
scanner. All code and data will be publicly released.

Quantitative results We manually align ground-truth
shapes with the predicted shapes using ICP method [1] and
then uniformly sample 20000 points on the both shapes to
compute the four error metrics (CD, CDN-mean, CDN-med,
Metro). The quantitative numbers are summarized in Table 1.
For all the 4 objects, our method consistently outperforms
the visual hull baseline, which again demonstrates the effec-
tiveness of our transparent shape reconstruction framework.

Views CD(10−4) CDN-mean(◦) CDN-med(◦) Metro(10−3)
vh Rec vh Rec vh Rec vh Rec

monkey 12 3.99 3.94 21.2 16.4 14.8 11.9 20.7 13.9
mouse 10 8.04 5.35 19.0 16.3 11.4 12.0 16.6 13.0
pig 10 5.58 4.87 19.0 18.3 14.0 14.6 13.0 7.4
dog 10 2.25 1.86 14.5 12.4 11.4 10.3 4.1 4.0
mean 10.5 4.97 4.00 18.4 15.9 12.9 12.2 13.6 9.6

Table 1. Quantitative comparisons of transparent shape reconstruc-
tion on real data. We observe that our reconstruction achieves lower
average errors than the visual hull method on all the metrics.

Qualitative results and videos Figure 1 shows both the
ground-truth transparent shapes and our reconstructed shapes
rendered under different lighting and materials. Even though
the shapes are complex and we use very limited inputs, our re-
constructions still closely match the ground truth appearance.
This demonstrates the efficacy of our physically-motivated
network that models complex light paths induced by refrac-
tions and reflections. To better visualize the quality of our
3D reconstruction outputs, we create a video by rotating both
the ground-truth shapes and the reconstructed shapes under
different natural environment maps. The video is included
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in the supplementary material. A higher resolution video is
available at this link.

2. Sensitivity Analysis for Index of Refraction
As mentioned in Sec. 4.1 of the main paper, we perform

a sensitivity analysis on the influence of a different test-time
IoR on the shape reconstruction accuracy. We re-render our
synthetic transparent testing set with the same shapes and
environment maps. However, instead of rendering with a
fixed IoR value of 1.4723, we randomly sample 5 different
IoRs ranging from 1.3 to 1.7 for each shape. Figure 2 shows
an example of the same shape rendered under different IoRs.
We then test our network trained with a fixed IoR value
of 1.4723 on the new test set with variable IoR. During
testing, the IoR used by the rendering layer is kept fixed at
1.4723. The quantitative comparisons have been summarized
in Tables 1 and 2 of the main paper.

Figure 3 and 4 show trends in the normal and shape re-
construction errors across varying IoRs in the test set. As
expected, the errors are relatively smaller for IoRs close to
the training set value of 1.4723. In particular, this trend is
more explicitly visible in normal estimation, since the model
leverages the features from the rendering layer and cost
volume which require known IoRs. However, the overall
variation in error is small across this range of IoRs.

The above plots further support the analysis in Tables 1
and 2 of the main paper. Even though the predicted nor-
mals and the final reconstructed mesh are expectedly more
accurate in the known IoR case, the quantitative errors in-
crease gracefully and not too much across a range even with
unknown IoR. This suggests that our network is relatively
robust to the IoR value. As stated in the main paper, our
future work will consider simultaneously reconstructing the
transparent shape and predicting its IoR.

3. Further Ablation Studies
Different number of views Table 2 summarizes the nor-
mal predictions from 5 and 20 views. Similar to the 10-view
case, our entire method wr+cv+op outperforms all other
baselines on all the five metrics. In particular, we find the
cost volume (cv) and the optimization of the latent vector
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Figure 1. Results on 3D reconstruction for four real transparent objects. All shapes are reconstructed from 10 views, except the monkey in
the last row that uses 12 views. We first present reconstruction results from two input views (columns 1-6). From left to right, the odd rows
show the input image and the reconstructed shapes under different lighting and materials. The corresponding outputs using the ground-truth
shapes rendered from the same view are shown in the even rows. We also render the reconstructed shapes and ground-truth shapes from a
novel view direction that has not been used to build the visual hull (columns 7-8). In each instance, we observe that the reconstructions are
close to the ground truth despite the challenging shapes, complex light paths and small number of views used for 3D reconstruction.
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Figure 2. Appearance changes for same shape geometry under various index of refraction (IoRs). IoRs range from 1.3 to 1.7.

Figure 3. The mean normal estimation errors across varying IoRs
in the test set, using the fixed training set IoR value for prediction.

Figure 4. The mean shape reconstruction errors across varying IoRs
in the test set, using the fixed training set IoR value for prediction.

(op) bring the largest improvements on normal reconstruc-
tion accuracy. This justifies our intuition that utilizing the
correspondence between the input image and the captured
environment map by modeling the image formation process
within the network can lead to better normal reconstruction
results. Figure 5 shows two normal reconstruction results
on our synthetic dataset. For both examples, our physically-

5 views normal
vh5 basic wr wr+cv

wr+cv
reconstruction +op
N1 median (◦) 12.7 6.1 6.0 6.0 5.9
N1 mean (◦) 15.3 7.8 7.9 7.8 7.7
N2 median (◦) 18.3 10.7 10.7 10.5 10.0
N2 mean (◦) 20.9 12.5 12.5 12.3 11.9
Render Err.(10−2) 9.7 5.9 5.8 5.9 4.1

20 views normal
vh20 basic wr wr+cv

wr+cv
reconstruction +op
N1 median (◦) 2.5 2.2 2.2 2.2 2.2
N1 mean (◦) 4.6 3.4 3.4 3.3 3.3
N2 median (◦) 5.2 4.7 4.6 4.6 4.3
N2 mean (◦) 7.6 6.5 6.4 6.3 6.1
Render Err.(10−2) 4.0 3.7 3.8 3.8 2.7

Table 2. Quantitative comparisons of normal estimation from 5
and 20 views. Following the notation in the main paper, vh5
and vh20 represent the initial normals reconstructed from visual
hulls corresponding to 5 and 20 views, respectively. Here, wr and
basic are our basic encoder-decoder network with and without
rendering error map (Ier) and total reflection mask (M tr) as inputs.
Further, wr+cv represents our network with cost volume and wr+cv
+ opt represents the predictions after optimizing the latent vector to
minimize the rendering error. Similar to the 10-view case, wr+cv +
opt performs better than all other baselines for transparent shape
reconstruction using both 5 and 20 views.

CD(10−4) CDN-mean(◦) CDN-med(◦) Metro(10−3)
RE-LCD

P 2.00 6.02 4.38 5.98

→maxPooling 2.09 6.26 4.59 6.09
– normal Diff. 2.09 6.31 4.62 6.48
– normal Skip. 2.07 6.14 4.51 6.20
standard 2.12 6.34 4.72 6.49

Table 3. Comparisons of point cloud reconstruction with different
PointNet++ architectures on our synthetic dataset. Following the
notation in the main paper, RE represents rendering error based
view selection. LCD

P represents the Chamfer distance loss.

based network performs significantly better than the classical
visual hull method for 5, 10 and 20 views.

Modification of standard PointNet++ [2] We examine
our modifications of the standard PointNet++ architecture
for point cloud reconstruction to better incorporate normal
information. The quantiative numbers are summarized in
Table 3. We first remove single modifications from standard
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Figure 5. Normal predictions on our synthetic dataset with different number of input views. Regions with total reflection have been masked
out in the rendered images. Our predicted normals are much closer to the ground truth compared to the visual hull normals.

5 views VH. 5 views Rec. 10 views VH. 10 views Rec. 20 views VH. 20 views Rec. Groundtruth
Figure 6. Transparent shape reconstruction in our synthetic dataset using 5, 10 and 20 views. Images rendered with our reconstructed shapes
are much closer to the those rendered with ground truth shape, as compared to images rendered with the visual hull shapes. The inset
normals are rendered from the reconstructed shapes and demonstrate the same conclusion.

PointNet++ to our novel version (→ maxPooling, – normal
Diff. and – normal Skip.) and then remove all the modifi-
cations to use standard PointNet++ to reconstruct the point
cloud of our transparent shapes (standard). Experiments
show that each of our modifications brings consistent im-

provements in reconstruction accuracy and removing all of
them leads to a much poorer performance. This shows our
modifications ease the difficulty for the network to reason
about point cloud distribution based on normal predictions.
Figure 7 demonstrates a real example reconstructed by our



Figure 7. Comparisons of point cloud reconstruction with different
loss functions on a real example. Our modified PointNet++ trained
with Chamfer distance loss achieves better quality compared with
the other two losses.

10 views normal
vh10

wr+cv wr+cv
reconstruction +op +opPixel
N1 median (◦) 5.5 3.4 3.8
N1 mean (◦) 7.5 4.8 4.9
N2 median (◦) 9.2 6.6 7.4
N2 mean (◦) 11.6 8.4 8.5
Render Err.(10−2) 6.0 2.9 2.6

Table 4. Quantitative comparisons of different optimization strate-
gies for normal estimation from 10 views. op represents optimiza-
tion the latent vector, which is the results reported in the main paper.
opPixel represents optimization direction in the pixel space.

modified PointNet++ trained using different loss functions.
It is clearly observed that our modified PointNet++ trained
with Chamfer distance loss leads to a more complete and
less noisy 3D reconstruction, especially for thin structures
and concave regions.

Optimization of latent vector We adopt an alternating
minimization strategy to optimize the latent vector. We first
keep N1 unchanged and only change N2 by adding a large
identity loss on N1. After 500 iterations, we remove the con-
straint and optimize both N1 and N2 simultaneously. This is
because the our N1 prediction is usually more accurate and
optimizing N2 first can lead to better results. In Table 4, we
compare the normal reconstruction results of optimizing the
latent vector and directly optimizing the per-pixel normals.
The quantitative comparison shows that while optimizing
per-pixel normal can also decrease the rendering error, only
by optimizing the latent vector can we observe improvements
in normal reconstruction accuracy. The inherent ill-posed
nature of normal prediction of transparent shapes makes it
necessary to have a strong regularization to obtain meaning-
ful outputs. In this case, the regularization is provided by the
trained decoder which constrains the predicted normals to
be on the natural shape manifold.

4. Building the Cost Volume

To build the cost volume (cv) for normal prediction, we
sample φ uniformly from 0 to 2π and sample θ according to

{θk}4k=1 {φk}4k=1

5 views 0◦,25◦,25◦,25◦ 0◦,0◦,120◦,240◦

10 views 0◦,15◦,15◦,15◦ 0◦,0◦,120◦,240◦

20 views 0◦,10◦,10◦,10◦ 0◦,0◦,120◦,240◦

Table 5. The sampled angles for building cost volume. We set
the sampled angles according to the normal error of visual hull
reconstructed by different number of views.
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Figure 8. The error distribution of visual hull normals Ñ1 from
different number of views.

Algorithm 1 Mapping normals to visual hull geometry
for point p̃ uniformly sampled from visual hull do

p̃N1 ← the original visual hull normal
p̃Mtr ← 1, p̃Ier ← 2, p̃v ← 0, p̃c = 0

for view v from 1 to V do
for point p̃ uniformly sampled from visual hull do

isUpdate← False

if V(p̃) = 1 then
if Sv(p̃,Mtr

v ) = 1 then
if p̃trM = 1 and Cv(p̃) > p̃c then

isUpdate← True

else
if p̃M = 1 then

isUpdate = True

else if Sv(p̃, Ierv ) < p̃Ier then
isUpdate = True

if isUpdate = True then
p̃N1 ← Tv(Sv(p̃, N1

v )), p̃Mtr ← Sv(p̃,M tr
v )

p̃Ier ← Sv(p̃, Ierv ), p̃c = Cv(p̃), p̃v ← v
{f} ← Concatenate {p̃N1}, {p̃Mtr}, {p̃Ier}, {p̃c}
return {f}, {p̃v}

the visual hull normal error. In particular, we first randomly
sample 100 scenes from our synthetic dataset and compute
the angles between visual hull normals and ground truth
normals. We set one θ value to be 0 and the other to larger
than 85% of angles between the visual hull normal Ñ1 and
ground truth normal N̂1. The distribution of visual hull
normal Ñ1 error for 5, 10 and 20 views are presented in
Figure 8. Table 5 summarizes the configurations of {θ} and
{φ} angles for different number of views.

5. Details for Feature Mapping
Our feature mapping method using the rendering error

based view selection is summarized in Algorithm 1. We
first try to select the view with no total reflection as the
best view v∗. If there is more than one view with no total
reflection, we choose the view with the lowest rendering
error. If for every view, the current point is in the region of
total reflection, we choose the view whose optical center is
closest to the point. Experiments in the main paper show



that our rendering error based view selection (RE) performs
slightly better than average fusion (AV) and nearest view
selection (NE) on 3D reconstruction accuracy.
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