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Figure A. Semantic segmentation submodule. Each 3× 3 convolu-
tion block consists of a deformable convolution (with the indicated
number of output channels), a Group Normalisation operation, and
a ReLU activation. Weights are shared across 3× 3 convolution
blocks with the same colour code.

Appendices
A. Architecture and design

A.1 Semantic segmentation submodule

Our semantic segmentation submodule is modified from [9],
by performing Group Normalisation [8] after each 3 × 3
convolution. We illustrate the pipeline in Fig. A. Note that
the architecture of the feature decoder inside this submodule
is also adopted by our dense instance affinity head to extract
affinity features Q. This submodule is supervised by a cross-
entropy loss, unless otherwise stated.

A.2 Object detection submodule

In our experiments, we use the standard box head from
Faster-RCNN [7] and optionally the mask head from Mask-
RCNN [2] for this submodule, following [9, 3]. For the mask
head, we use the Lovasz Hinge loss to replace the binary
cross entropy loss. Thanks to the modular design of our
network, it is easy to substitute it with any other detector
architecture.
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Variant B Variant C
Dataset PQ SQ RQ PQ SQ RQ

Cityscapes 61.4 81.8 74.7 60.3 80.8 73.5
COCO 42.7 79.4 52.2 43.4 79.6 53.0

Table A. Ablation study on two design variants for the dynamic
potential head. On Cityscapes, variant B outperforms variant C,
whereas on COCO, variant C achieves higher accuracies.

Classified as
th. st.

GT th. 95.1 4.9
st. 0.0 100.0

(1) Cityscapes

Classified as
th. st.

GT th. 90.1 9.9
st. 4.8 95.2

(2) COCO
Table B. Confusion matrices between “thing” and “stuff” for se-
mantic segmentation submodule outputs on Cityscapes and COCO
validation sets. All numbers are percentages, normalised row-wise.

A.3 Dynamic potential head

We refer to the design variant B and C presented in Sec. 3.4.1
(Fig. 4). At first glance, variant B, which multiplies semantic
segmentation probabilities Vi(ck) with mask scores Mi(k),
appears to be a more appropriate method than variant C
which sums probabilities instead. The output of variant B
is high only when both inputs are unanimously high. This
can filter out spurious misclassifications from either input,
and improve robustness towards false positive predictions.
Indeed, on Cityscapes, we observe that variant B achieves
a 1.1 PQ lead over the variant C counterpart (first row of
Table A).

However, on COCO, we notice a high tendency for the
semantic segmentation submodule to mistake “things” for
“stuff” (Table. B2). The multiplicative action of variant B can
systematically and substantially weaken the panoptic logits
for “thing” classes, relative to the unattenuated panoptic
logits of “stuff” classes. This can be undesirable for models
whose semantic segmentation submodule is already prone
to misclassifying “things” as “stuff”. On the other hand,



Dets. for training PQ SQ RQ IoU APbox

Ground truths 58.6 80.0 72.0 77.8 36.8
Predictions 59.0 80.1 72.4 77.8 38.1

Table C. Comparison between two different training strategies.
The top row uses ground truth detections to train the panoptic
segmentation submodule, whereas the bottom row uses the ones
predicted by the network on-the-fly. Results are reported on the
Cityscapes validation set.

the opposite is true for variant C, as summation strengthens
panoptic logits of “things” in comparison to unmodified
“stuff” scores. This led us to use variant C for COCO, and we
observe a 0.7 PQ improvement in comparison to B (second
row of Table A).

A.4 Training with predicted detections

In contrast with the practice in [9], we argue that, during
training, the dynamic potential head should use predicted de-
tections instead of ground truth ones to construct its output
Ψ. This allows the network to learn from realistic exam-
ples, and build up its robustness towards imperfections in
detection localisation and scoring. To test our hypothesis,
we carried out an ablation study on Cityscapes using our
mask-free model. When training with ground truth boxes,
a uniform score of 1.0 is used for their confidence scores.
Results are shown in Table C. As expected, training with pre-
dicted detections yields performance improvements across
all panoptic metrics, including a 0.4 increase in PQ. A large
boost in observed for APbox (+1.3), because training with
predicted boxes allows gradients from the panoptic segmen-
tation submodule to flow to the object detection submodule,
giving it more fine-grained supervision. IoU has not changed,
as this ablation setting does not affect the semantic segmen-
tation module.

B. Implementation details

Cityscapes training. We run our experiments on four
V100-32GB GPUs. This allows us to load each GPU with
eight image crops and obtain an effective batch size of 32.
The large number of crops per GPU enables us to use a
Lovasz Softmax loss [1] instead of a cross entropy loss for
supervising semantic segmentation, which we found to be
effective. Following [3], we use a base learning rate of 0.01,
a weight decay of 0.0001, and train for a total of 65k itera-
tions. The learning rate is reduced by 10 folds after the first
40k iterations, and once more after another 15k iterations.
Additionally, we adopt a “warm-up” period at the start of
training – linearly increasing the learning rate from a third
of the base rate to the full rate in 500 iterations, which helps
stabilise the training.

We augment input images on-the-fly during training to

reduce the network’s tendency to overfit. Our augmentation
pipeline resizes the input image by a random factor between
0.5 and 2, takes a random 512 × 1024 crop, and applies a
horizontal flip with 50% chance. On top of these techqni-
ues, we also apply image relighting, randomly adjusting the
brightness, contrast, hue, and saturation of the image by a
small amount, as used in [3].

COCO training. On COCO, as the dataset is larger than
Cityscapes, less overfitting is observed. Therefore, in terms
of data augmentation techniques, we only apply resizing
where the shorter size is resized to 800 and the longer size
is kept under 1333, and random horizontal flipping with 0.5
probability.

Miscellaneous. We use ImageNet pretrained ResNet-50 to
initialise all experiments. The batch normalisation statistics
are kept unchanged, though further performance gains are
likely if they are finetuned on the target dataset. When a
normalisation step is used in either the semantic or panoptic
submodules, we use the Group Normalisation operation [8],
as it is less sensitive to batch sizes.

Inference. We conduct single-scale inference for all ex-
periments, letting the network process and make predictions
on full-resolution images in a single forward pass. Note
that only detection predictions whose confidence scores are
more than a threshold are fed into the dynamic potential
head during inference, to minimise unnecessary computa-
tion. This cut-off is 0.5 and 0.75 for Cityscapes and COCO
respectively.

C. Evaluation of “stuff”

The PQ metrics effectively treats “stuff” classes as image-
wide instances – making all “stuff” segments undergo the
same matching procedure with ground truth segments as
“thing” segments. While this approach has its merits includ-
ing a unified evaluation logic and a simplified PQ implemen-
tation, it should be noted that matching “stuff” predictions
to ground truth is not strictly necessary, since at most one
“stuff” instance for each “stuff” class is present per image.

Furthermore, this approach towards “stuff” is neither ro-
bust nor fair as a measure for “stuff” segmentation quality,
and arguably encourages post-processing of panoptic pre-
dictions. Under the PQ formulation, misclassifying even a
single pixel into a “stuff’ class absent in the ground truth
will increment false positive detections by one, and such
mistakes – exacerbated by the relatively small number of
ground truth “stuff” segments in a dataset – attract a large
penalty on the “stuff” RQ, even though the practical impact
on perceptual quality is minimal. This also contrasts in spirit
with the mean IoU metric widely adopted to measure se-
mantic segmentation quality, as the mean IoU accumulates



Table D. Comparison of various evaluation metrics for “stuff”, be-
fore and after small stuff areas are set to “void” on Cityscapes
validation set. Note that the IoUst here is computed from the fi-
nal panoptic segmentation, by combining instances of the same
semantic class. This is different from the IoU metrics reported in
Table 1 and 3, which measure the quality of the semantic segmen-
tation input to the heuristic merger / our panoptic segmentation
submodule.

Model Trim
stuff

PQst SQst RQst IoUst

Pan. FPN [3]* 59.9 79.3 72.9 74.7
Pan. FPN [3]* 3 62.0 79.6 75.5 74.5

+2.1 +0.3 +2.6 -0.2

UPSNet [9]† 60.5 79.8 73.6 75.8
UPSNet [9]† 3 62.8 80.0 76.3 75.7

+2.3 +0.2 +2.7 -0.1

Ours 64.2 81.4 77.1 78.3
Ours 3 66.3 81.8 79.4 78.2

+2.1 +0.4 +2.3 -0.1

* Results obtained from our re-implementation of Panoptic FPN.
† Results obtained by running the public inference script of [9].

intersection and union counts over the whole dataset and is
minimally affected by individual pixels.

On the other hand, CNN-based semantic segmenta-
tion models are typically prone to produce spurious mis-
classifications, as they usually do not explicitly enforce
smoothness. As a result, recent panoptic segmentation
works [4, 6, 5, 3, 9, 10] collectively resort to setting small
“stuff” segments to “void” in the final panoptic segmenta-
tion. Therefore, to foster meaningful comparison with other
state-of-the-art panoptic segmentation approaches, unless
specified otherwise, we also carry out this strategy as part of
evaluation.

Effects of trimming small stuff segments on evaluation
metrics. On Cityscapes validation set, we test our full
model, our re-implemented Panoptic FPN [3], and the re-
leased UPSNet model [9] with and without trimming off
small “stuff” regions, to quantitatively assess the impact of
this step on state-of-the-art models. The findings are reported
in Table D.

The results show that PQ and RQ are very sensitive to
such operations, as removing small stuff segments consis-
tently results in an increase of approximately 2 points for
“stuff” PQ, and 2.5 points for “stuff” RQ. This can be largely
attributed to the reduced number of false positive stuff seg-
ments. On the other hand, the “stuff” IoU metric is insen-
sitive to such modifications, as in all three cases, it suffers
a slight decrease of 0.1 or 0.2 points. This prompts us to
believe that “stuff” IoU is a better metric for capturing “stuff”
segmentation quality than the “thing”-centric PQ family.

D. Detailed validation set results

We report the detailed results of our models on the
Cityscapes and COCO validation sets in Table E. In addition
to the metrics reported in the main paper, this table also
includes breakdowns of SQ and RQ by “stuff” and “thing”.

E. Visualisation of learnt instance affinities

Additional visualisations of some predicted instance
affinities are provided in Fig. B. Note that these instance
affinities are extracted from our mask-free model. Interest-
ingly, the model has learnt to resolve cars regions covered
by multiple car bounding boxes – a problem difficult for
methods only using boxes as localisation cues – by creating
strong instance affinities to the bottoms and tyres of cars.
The model has found that these regions of cars are normally
not covered by multiple bounding boxes, and therefore it
is most helpful for instance discrimination by associating
uncertain pixels with these regions.

F. Qualitative results

We show more qualitative results in Fig. C and D, and
comparisons to previous state-of-the-art methods [3, 9].
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PQ SQ RQ IoU AP AP
Dataset Method all th. st. all th. st. all th. st. all th. st. mask box

Cityscapes Ours (w/o mask) 59.0 50.2 65.3 80.1 78.4 81.2 72.4 63.9 78.6 77.8 78.7 77.2 – 38.1
Cityscapes Ours (w/ mask) 61.4 54.7 66.3 81.1 80.0 81.8 74.7 68.2 79.4 79.5 81.0 78.4 33.7 38.8

COCO Ours (w/ mask) 43.4 48.6 35.5 79.6 80.0 78.9 53.0 59.2 43.8 53.7 60.4 43.6 36.4 40.5

Table E. Full panoptic segmentation results on Cityscapes validation set and COCO validation set. All models are ResNet-50 based, and
tested with a single-scale inference scheme, without test-time augmentation.

(a) Image with boxes (b) Ground truth (c) Instance affinities (d) Panoptic prediction

Figure B. Additional examples of instance affinities. In (c), we show the instance affinities – overlaid on input images to aid visualisation –
of the cross-marked pixels in (a). These affinities and predictions are predicted by our mask-free models which use only bounding boxes.
They can be seen to help segment full objects when bounding box localisation is poor (Row 1), and attribute pixels within multiple bounding
boxes to the correct instances (Row 2 to 5). For Row 4, our proposed method is able to overcome a false positive detection, as the dynamic
potential is robust towards false detections. For Row 5, the cross-marked pixel is on the wing mirror of the closest silver car, and our
fine-grained instance affinity is able to attribute the mirror to the correct car, while the ground truth has failed to correctly label as such.



(a) Image (b) Ground truth (c) Heuristic Fusion [4] (d) Ours

Figure C. Qualitative results on Cityscapes. Column (c) and (d) are produced by the same model under different inference strategies –
either by heuristic merger [4] or with our proposed panoptic segmentation submodule. Row 1 to 3 shows that our model are able to revise
erroneous cues and resolve conflicts between overlapping object masks. Row 4 and 5 demonstrate our network’s ability to segment outside
boxes, when boxes do not cover the full extent of an object.
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(a) Image (b) Ground truth (c) UPSNet [9] (d) Ours

Figure D. Qualitative results on COCO. Column (c) is produced by running the publicly available inference script of [9]. With our
parametrised panoptic segmentation submodule, we are able to produce more coherent, accurate, and visually appealing predictions than the
parameter-free approach of [9].




