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The supplementary material contains:

• The results of the proposed fusion model between FP-
Conv and PointConv [9] on Scannet [2].

• The results of the proposed fusion model between FP-
Conv and KPConv-deform [8] on S3DIS [1].

• Comparison of trainable parameters between different
convolution operators.

• More qualitative and quantitative results on large-scale
scene segmentation tasks.

A. More results of the proposed fusion strategy

a. Fusing FPConv and PointConv on ScanNet

We conduct experiments on fusion of FPConv with
PointConv [9] on ScanNet [2]. The results are reported in
Table 1, where all methods are performed under same set-
tings (architecture, hyper parameters, etc.). Note that we
reduce sampled points to 8k in a block of 1.5m × 1.5m for
all experiments.

Method mIoU mA oA

PointConv [9] 55.6 - -
PointConv† 60.3 72.3 83.6
FPConv (ours) 63.0 75.6 85.3
FPConv ⊗ PointConv 64.2 76.1 86.0

Table 1: Quantitative results of the segmentation task on
evaluation dataset of ScanNet. PointConv† indicates our re-
implementation of PointConv [9].

b. Fusing FPConv and KPConv-deform on S3DIS

We further report the results of the proposed fusion
model between FPConv and KPConv-deform [8] on S3DIS
[1] in Table.3, where the results of each class are also
shown. As seen, the proposed fusion model wins all ex-
isting methods, reaching the state-of-the-art.

B. Parameter Comparison
We compared the trainable parameters of PointConv, FP-

Conv and their fusion forms in Table.2. We can see that
fusion of convolution operators of same type cannot bring
significant improvement and even get worse. While for the
fusion of different types (FPConv ⊗ PointConv), even if we
reduce the channel size of the fusion block, it still performs
much better than before the fusion.

Method mIoU parameters

PointConv† 60.3 4.5
FPConv (ours) 63.4 4.8
FPConv ⊗ PointConv 64.2 7.7
FPConv ⊗ PointConv + mid ch / 2 65.1 3.8
PointConv ⊗ PointConv 60.7 7.6
FPConv ⊗ FPConv 62.9 7.8

Table 2: Comparison of trainable parameters between dif-
ferent convolution operators on ScanNet evaluation dataset.
† indicates our implementation. + mid ch /2 is halving the
middle channel size of bottleneck in residual block.

C. More Results on Segmentation Tasks
We provide more details of our experimental results. As

shown in Table.4, we compare our FPConv with other pop-
ular methods on S3DIS [1] 6-fold cross validation, which
shows that FPConv can achieve higher score on flat-shaped
objects, such like ceiling, floor, table, board, etc. While
KPConv [8], a volumetric-style method, performs better on
complex structures. More visual results are shown in Fig.1
and Fig.2.
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Figure 1: Visualization of semantic segmentation results of FPConv on ScanNet.
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Figure 2: Qualitative comparisons of semantic segmentation tasks on S3DIS area 5. ⊕ indicates fusing in final feature level.
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