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Figure 1. The MV refinement network. Conv(3,64,1,1) represents

the convolutional layer with the kernel size of 3×3, the output

channel of 64, the stride of 1, and the dilation constant of 1. Each

convolutional layer is followed by a leaky ReLU except the last

layer (indicated by green).

1. Proposed Method

1.1. Details of Our MV Refinement Network

The architecture of our MV refinement network is pre-

sented in Fig. 1. We first use a two-layer CNN to extract

the features of v̂t−3, v̂t−2, v̂t−1, v̂′
t
, and x̂t−1, respectively.

And then, the features of v̂t−3, v̂t−2 and v̂t−1 are warped

towards vt with the help of v̂′
t
,

v̂w
t−k

= Warp(v̂t−k, v̂
′

t
+

k−1∑

l=1

v̂w
t−l

), k = 1, 2

fw

v̂t−i
= Warp(fv̂t−i

, v̂′
t
+

i−1∑

k=1

v̂w
t−k

), i = 1, 2, 3

(1)

where v̂w
t−k

is the warped version of v̂t−k towards v̂′
t
. Fi-

nally, the warped features, and the features of v̂′
t

and x̂t−1

are fed into a dilated convolution-based network, which

can capture larger receptive field, to obtain the final recon-

structed MV,

v̂t = Hmvr(f
w

v̂t−3
, fw

v̂t−2
, fw

v̂t−1
, fv̂′

t
, fx̂t−1

) + v̂′
t

(2)

where Hmvr denotes the function of the network.

1.2. Details of Our Residual Refinement Network

Fig. 2 shows the architecture of our residual refinement

network. First, we use a two-layer CNN to extract the fea-

C
o

n
c
a
te

n
a
te𝑓ො𝑥𝑡−2𝑤

𝑓ොx𝑡−4𝑤𝑓ො𝑥𝑡−3𝑤

C
o
n
v

(3
,4

8
,1

)

R
e
si

d
u

a
l 

B
lo

c
k

C
o
n
v

(3
,4

8
,1

)

C
o
n
v

(3
,4

8
,2

)

C
o
n
v

(3
,4

8
,2

)

B
il

in
e
a
r,

  
2

R
e
si

d
u

a
l 

B
lo

c
k

R
e
si

d
u

a
l 

B
lo

c
k

x1 x1

R
e
si

d
u

a
l 

B
lo

c
k

R
e
si

d
u

a
l 

B
lo

c
k

C
o

n
v
(3

,3
,1

)

R
e
si

d
u

a
l 

B
lo

c
k

B
il

in
e
a
r,

  
2

x2 x1 x1 x1

Ƹ𝑟𝑡
𝑓 Ƹ𝑟𝑡′𝑓തx𝑡𝑓ො𝑥𝑡−1𝑤

Figure 2. The residual refinement network. Each convolutional

layer outside residual blocks is followed by a leaky ReLU except

the last layer (indicated by green). Each residual block consists of

two convolutional layers, which are configured as follows: kernel

size is 3×3, output channel number is 48, the first layer has ReLU.

tures of x̂t−4, x̂t−3, x̂t−2, and x̂t−1 and warp them towards

the current frame. This warping operation is the same with

Eq. (4) in the paper. Then, the warped features and the fea-

tures of x̄t and r̂′
t

are fed into a CNN, which is based on the

U-Net structure [8] and integrates multiple residual blocks,

to obtain the refined residual r̂t,

r̂t = Hres(f
w

x̂t−4
, fw

x̂t−3
, fw

x̂t−2
, fw

x̂t−1
, fx̄t

, fr̂′
t
) (3)

where Hres represents the function of the network.

2. Experiments

2.1. Ablation Study of Our MAMVPNet

To verify the effectiveness of the components in

MAMVP-Net, we conduct experiments to compare the pro-

posed MAMVP-Net (denoted by multi-scale w/ alignment)

with its simplified versions: (1) single-scale w/o alignment,

(2) single-scale w/ alignment, (3) multi-scale w/o align-



Table 1. Bit-rates (bpp) and reconstruction quality (PSNR) for ab-

lation study of the MAMVP-Net
Network single-scale single-scale multi-scale multi-scale

w/o alignment w/ alignment w/o alignment w/ alignment

bpp 0.297 0.290 0.287 0.285

PSNR (dB) 31.250 31.198 31.196 31.290

ො𝑣6- ҧ𝑣6
𝑑6 መ𝑑6

Figure 3. Visualized results of compressing the Kimono sequence

using Add MVRefine-Net model. From left to right: the orig-

inal MVD d6, the decoded MVD d̂6, and the refined MVD, i.e.

v̂6 − v̄6.

ment. These models are tested on HEVC Class D dataset

and the reconstruction quality and bit-rates are shown in Ta-

ble 1. It can be observed that the proposed MAMVP-Net

achieves the highest reconstruction quality with the lowest

bit-rates.

2.2. Visual Results of Our MV RefineNet

In Fig. 3, we visualize the original MVD d6, the de-

coded MVD d̂6, and the MVD after refinement, i.e. v̂6 −

v̄6, when compressing the Kimono sequence using Add

MVRefine-Net model. After compression, there are

more zeros in d̂6 than d6 due to the bit rate constraint. Our

MV Refine-Net can restore some non-zero MVDs and thus

improve the accuracy.

2.3. Visual Results of Our MMCNet

In Fig. 4, we visualize the original frame x9 (a), the pre-

dicted frame x̄9 obtained by Add MVRefine-Net model

with λ = 64 (b), and the predicted frame x̄9 obtained by

Add MMC-Net model with λ = 64 (c), when compress-

ing the BasketballPass sequence. We can observe that the

image in Fig. 4 (b) is much more smooth than (c), e.g. in

the area of the wall. Quantitatively, the PSNR of the pre-

dicted frame in Fig. 4 (c) is 31.97dB, while the PSNR of

the predicted frame in Fig. 4 (b) is 31.42dB. Therefore, our

MMC-Net can obtain a more accurate prediction with more

details by using multiple reference frames.

2.4. Visual Results of Our Residual RefineNet

In Fig. 5, we visualize the original residual r6, the

decoded residual r̂′
6
, and the refined residual r̂6, when

compressing the RaceHorses sequence using Proposed

model. We can observe that r̂′
6

is much more smooth than

r6 due to the rate constraint. Our Residual Refine-Net can

restore some image details and thus improve the reconstruc-

tion quality.

2.5. Compression Performance on the HEVC Class
C and E Datasets

We provide the compression results on the HEVC Class

B and D datasets in the paper. In Fig. 8, we also present the

compression results on the HEVC Class C and E datasets

using H.264, H.265, DVC [5], and the proposed method. It

can be observed that our method outperforms DVC [5] by

a large margin. When compared with H.265, our method

achieves on par or better compression performance in PSNR

and MS-SSIM.

2.6. Comparison with Other Learned Video Com
pression Methods

In the paper, we compare with two learned video

compression methods of the state-of-the-art, i.e.

Wu ECCV2018 [10] and DVC [5]. Here, we also

compare with other two latest learned methods, i.e.

Djelouah ICCV2019 [4] designed for random-access

scenarios and Rippel ICCV2019 [7] targeting low-

latency scenarios. From Fig. 7 (b), we can observe that

Djelouah ICCV2019 [4] achieves better performance of

0.25 ∼ 0.7dB gain than our method in terms of PSNR

on the MCL JCV dataset [9]. Note that, their method

is designed for random-access scenarios and integrates

the autoregressive prior, proposed in [6], to predict the

probabilities of quantized representations in entropy model.

This autoregressive model has an obvious disadvantage

of high decoding complexity even in parallel devices

like GPU/TPU. From Fig. 7 (c), we can observe that

Rippel ICCV2019 [7] outperforms our method by about

0.005 in terms of MS-SSIM on the Xiph 1080p video

dataset [1]. Note that, their method is optimized directly

for MS-SSIM, but ours is optimized for MSE. It requires

our future work to optimize our model for MS-SSIM to

achieve a better performance in MS-SSIM.

2.7. Comparison with H.264 and H.265 in Other
Settings

In the paper, we compare with the results of H.264 and

H.265 where the results are directly cited from [5]. Note

that the results are obtained by using the veryfast mode

of x264 and x265 codecs, respectively. Here, we also com-

pare with the results of H.264 and H.265 using other set-

tings. Specifically, we use the following command lines

for compressing a sequence Video.yuv whose resolution is

W×H using x264 and x265 codecs,

ffmpeg -y -pix fmt yuv420p -s WxH -r FR -i Video.yuv -

vframes N -c:v libx264 -crf Q -loglevel debug output.mkv

ffmpeg -y -pix fmt yuv420p -s WxH -r FR -i Video.yuv -

vframes N -c:v libx265 -x265-params “crf=Q” output.mkv

where FR, N, Q stand for the frame rate, the number of

frames to be encoded, and the quality level, respectively.



(a) (b) (c)

Figure 4. Visualized results of compressing the BasketballPass sequence. (a) The original frame x9. (b) The predicted frame x̄9 obtained

by Add MVRefine-Net model with λ = 64. (c) The predicted frame x̄9 obtained by Add MMC-Net model with λ = 64. There are

much more details in (c) than (b).

Ƹ𝑟6Ƹ𝑟6′𝑟6
Figure 5. Visualized results of compressing the RaceHorses se-

quence using Proposed model. From left to right: the original

residual r6, the decoded residual r̂′6, and the refined residual r̂6.

Fig. 8 presents the compression results on the UVG

dataset and the HEVC Class B and Class D datasets. It

can be observed that our proposed method achieves com-

petitive results than x264 in PSNR, and is on par with x265

in MS-SSIM.
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Figure 6. Compression results of H.264, H.265, DVC [5], and the proposed method on the HEVC Class C and E datasets. The results of

H.264 and H.265 are cited from [5].
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Figure 7. Compression results of Djelouah ICCV2019 [4], Rippel ICCV2019 [7], and the proposed method on two different datasets. We

directly cite the results reported in [4] and [7]. Please note that Djelouah ICCV2019 [4] is designed for random-access scenarios and uses

the autoregressive entropy model proposed in [6], while our method targets low-latency scenarios and just uses the fully-factorized ( [2])

and hyperprior ( [3]) entropy model. Rippel ICCV2019 [7] is optimized for MS-SSIM but ours is optimized for MSE, PSNR results were

not reported in [7].
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Figure 8. Compression results on the three datasets using H.264, H.265, DVC [5], Wu’s method [10] and the proposed method. The settings

of H.264 and H.265 are specified in the text. Top row: PSNR. Bottom row: MS-SSIM.


