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1. Mathematical Details
We describe more mathematical details of our variational

inference with Gaussian Process latent variables.

Lemma 1 (Covariance under spatial correlation
assumptions). Assume that the latent variables
z = (z1, . . . , zJ) can be divided into k independent groups,
within which the latent variables are correlated. Denote
(zm1

, . . . , zmdm
) as the mth group with dm components,

where m = 1, . . . , k and
∑k

m=1 dm = J . Defining the
correlation structure by Corr(zmi

, zmj
) = ρm < 1

when i 6= j and Corr(zmi , znj ) = 0 when m 6= n, the
determinant of the covariance matrix can be written as:

|Σ| =
J∏
i=1

σ2
i

k∏
m=1

(1− ρm)dm−1(ρmdm + 1− ρm). (5)

Proof. The covariance matrix can be written as

Σ =


D1 0 0 . . . 0
0 D2 . . . 0
...

...
...

. . .
...

0 0 0 . . . Dk

 , (6)

where

Dm =


σ2
m1

σm1σm2ρm . . . σm1σmdm ρm
σm2σm1ρm σ2

m2
. . . σm2σmdm ρm

...
...

. . .
...

σmdmσm1ρm σmdmσm2ρm . . . σ2
mdm

 .
(7)

With the spatial correlation assumption, it can be derived
that

|Dm| =
dm∏
i=1

σ2
mi(1− ρm)dm−1(ρmdm + 1− ρm). (8)

Thus we have

|Σ| =
k∏

m=1

dm∏
i=1

σ2
mi(1− ρm)dm−1(ρmdm + 1− ρm)

=

J∏
i=1

σ2
i

k∏
m=1

(1− ρm)dm−1(ρmdm + 1− ρm). (9)

Given the spatial correlation structure in Lemma 1, the
corresponding DKL divergence is derived in Theorem 2.

Theorem 2 (DKL divergence under spatial correlation
assumption). Under the spatial correlation assumptions
in Lemma 1 and the results in Equation (5), the DKL

divergence can be derived:

−DKL(qφ(z|ξ, ϕ)||pθ(z|ϕ))

=
1

2

k∑
m=1

(dm − 1) log(1− ρm) + log(ρmdm + 1− ρm)

+
1

2

J∑
j=1

(1 + log(σ2
j )− µ2

j − σ2
j ). (10)

Proof. It can be shown that∫
qφ(z|ξ, ϕ) log pθ(z|ϕ)dz

=− J

2
log(2π)− 1

2
Eqφ(z|ξ,ϕ)z

T z

=− J

2
log(2π)− 1

2
tr(Σ + uuT ), (11)

and ∫
qφ(z|ξ, ϕ) log qφ(z|ξ, ϕ)dz

=− J

2
log(2π)− 1

2
log |Σ|

− 1

2

∫
(z − u)TΣ−1(z − u)qφ(z|ξ, ϕ)dz

=− J

2
log(2π)−−1

2
log |Σ| − J

2
. (12)

Therefore, plugging in Equations (11) and (12), the DKL
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divergence can be derived as

−DKL(qφ(z|ξ, ϕ)||pθ(z|ϕ))

=

∫
qφ(z|ξ, ϕ)(log pθ(z|ϕ)− log qφ(z|ξ, ϕ))dz

=
1

2
(J + log |Σ| − tr(Σ + uuT ))

=
1

2

J∑
j=1

(1 + log(σ2
j )− µ2

j − σ2
j )

+
1

2

k∑
m=1

(dm − 1) log(1− ρm) + log(ρmdm + 1− ρm).

(13)

2. Evaluation Metrics
We adopt the evaluation metrics proposed in

Voigtlaender et al. [1]. The metrics that are used to
measures the quality of the segmentation as well as the
consistency of the predictions over time are listed in Table
3. Different from bounding box detection, where a ground
truth box may overlap with several predicted boxes, in
instance segmentation, since each pixel is assigned to at
most one instance, only one predicted mask can have an
Intersection over Union (IoU) larger than a given threshold
with a given ground truth mask.

We summarize the evaluation metrics defined in [1].
Given a set of estimated mask H = {h1, . . . , hK} and a
set of ground truth masks M = {m1, . . . ,mN}, a mapping
c(h) from an estimated mask h to ground truth mask m ∈
M can be defined using mask-based IoU as:

c(h) =

argmax
m∈M

IoU(h,m), if max
m∈M

IoU(h,m) > 0.5

0, otherwise
(14)

A soft version T̃P of the number of true positives is
defined in [1]:

T̃P =
∑
h∈TP

IoU(h, c(h)). (15)

The multi-object tracking and segmentation accuracy
(MOTSA) is defined as a mask IoU based version of the
box-based MOTA metric, i.e.

MOTSA = 1− |FN |+ |FP |+ |IDS|
M

(16)

=
|TP |+ |FP |+ |IDS|

M
(17)

and the mask-based multi-object tracking and
segmentation precision (MOTSP) as

MOTSP =
T̃P

|TP | (18)

The soft multi-object tracking and segmentation
accuracy (sMOTSA) proposed in [1] is defined as:

sMOTSA =
T̃P + |FP |+ |IDS|

M
, (19)

which accumulates the soft number T̃P of true positives
instead of counting how many masks reach on IoU of more
than 0.5. sMOTSA therefore measures segmentation as
well as detection and tracking quality.

3. Qualitative Evaluation
In this section, we present additional qualitative results:

1. Figure 4 shows an example of failure case. Our model
is able to use spatial interdependency and motion
continuity to reduce false negatives and improve VIST
performance in most challenging cases. However,
it still has limitations in some extremely challenging
cases, e.g., at Frame 121, most of the pedestrian’s body
parts are occluded by the traffic light pole.

2. Figure 5, 6, and 7 show more qualitative results
of our proposed method on the KITTI MOTS [1],
MOTSChallenge [1], and YouTube-VIS [2] datasets.
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Table 3: Evaluation metrics for video instance segmentation tracking.
Name Definition

sMOTSA↑ missed targets and identity switches
The soft Multiple Object Tracking and Segmentation Accuracy takes into account false positives,

MOTSA↑ missed targets and identity switches
The Multiple Object Tracking and Segmentation Accuracy takes into account false positives,

MOTSP↑ between true and estimated targets
The mask-based Multiple Object Tracking and Segmentation Precision is simply the average IoU

True positives (TP) ↑ Number of correctly matched masks.
Soft true positives (T̃ P ) ↑Sum of IoU of correctly matched masks.
False positives (FP) ↓ Number of predicted masks not assigned to any ground truth mask.
False negatives (FN) ↓ Number of ground truth masks not matched by any estimated masks.

Frame 105

Frame 110

Frame 121

Figure 4: An example of failure case. Left column shows the original frames of video sequence 02 in KITTI MOTS dataset. The regions
highlighted with red rectangles are further zoomed and shown in the right column. Our model is able to use spatial interdependency and
motion continuity to reduce false negatives and improve VIST performance in most challenging cases. However, it still has limitations in
some extremely challenging cases, e.g., in the above Frame 121, most of the pedestrian’s body parts are occluded by the traffic light pole.



Figure 5: The visualization of our proposed method on KITTI MOTS dataset.



Figure 6: The visualization of our proposed method on MOTSChallenge dataset.



Figure 7: The visualization of our proposed method on YouTube-VIS dataset.


