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Abstract

In this document we explore how commutativity of different
image processes can be used to predict the chirality resulting
from the interactions between these imaging operators, in-
cluding Bayer demosaicing, JPEG compression, and random
cropping.

1. Introduction
A key goal of our work is to understand how reflection

changes what we learn from image data. We can think of
this change as the difference between two distributions: one
represented by a data set, and the other represented by its
reflection. We suspect that when training a network to distin-
guish between samples from these two different distributions,
it can often accomplish this task by looking at low-level ar-
tifacts left by various imaging processes. This leads us to
ask, when can we attribute visual chirality to the content
being imaged, and when might it instead be the result of
the imaging process? To answer this question, we develop
theory relating whether an imaging process preserves the
achirality (i.e., symmetry) of a distribution to the commu-
tativity between the imaging process and reflection. Based
on the theory we developed in Section 2, we introduce a
simple technique to quickly examine this commutativity on
random samples in order to predict whether an imaging pro-
cess might introduce visual chirality into this distribution.
Furthermore, our analysis can be generalized to other image
transformation, such as random cropping.

Section 2 reviews the definitions and introduces the basic
connection between the commutativity of an imaging pro-
cess J with respect to an image transformation T—as in our
main paper, Tis reflection—and whether J can preserve the
symmetry with respect to T. Section 3 applies our theory to
analyzing the chirality introduced by common digital imag-
ing processes—Bayer demosaicing and JPEG compression–
for a specific image transformation reviewed by our main
paper that is mirror reflection. Section 4 examines how trans-
lation invariance, as incorporated through random cropping,
can influence the chirality of imaging processes. A surpris-

ing empirical finding is that by taking a collection of images
that are initially achiral, and passing them through Bayer de-
mosaicing and JPEG compression, this processed collection
can become chiral, even when looking at random crops of
these images. This holds even though Bayer demosaicing
and JPEG compression alone are insufficient to introduce
chirality to an achiral distribution when random cropping
is applied. Our theoretical and empirical results altogether
suggest that imperceptible chiral traces may be left in photos
by non-commutative imaging pipelines, which has impli-
cations on self-supervised learning, image forensics, data
augmentation, etc.

2. Commutativity and chirality

We begin by reviewing the derivation from our paper.
Consider a distribution D over images. For our purposes, D
can be thought of as a discrete probability distribution over
images from which one has a number of samples (e.g., to
form a dataset), in which case D(x) denotes the probability
of image x.

Our main derivation shows that an imaging process J
(e.g., JPEG compression) preserves the achirality of a distri-
bution D with respect to some transformation T when J and
T commute under D. We first derive this generally for any
bijective transformation T (thus not just mirror reflection).

To clarify our problem setting, let x denote an image
from an arbitrary distribution D. Let T be any bijective
transformation from one image to another—a mirror flip
being a specific example of such a transformation T. Let J
be an image processing operator, such as JPEG compression.
J also maps images to other images, but is not necessarily a
bijection. For instance, in the case of a lossy operation like
JPEG compression, multiple input images may compress to
the same output compressed image. That is to say, given
some input image x and its processed version y = J(x),
the preimage of y, J−1(y), is a set of images of cardinality
|J−1(y)| ≥ 1.

We are interested in image distributions that are (or are
not) symmetric with respect to the bijective transformation
T. We call a distribution D symmetric with respect to T if,
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for all x,
D(x) = D(T(x)). (1)

We also refer to such a symmetric distribution as achiral,
and conversely, we refer to an asymmetric distribution as
chiral.

We consider the effect of J on the distribution D and its
symmetries. For simplicity, We will use DJ to refer to the
distribution that results from applying J to the domain of D.
In other words, if y is an output processed image, then

DJ(y) =
∑

x∈J−1(y)

D(x). (2)

Finally, we are interested in proving symmetry properties
of distributions of processed images when the transforma-
tion of symmetry T commutes with the image processing
operator J, in other words, when, for all x

T(J(x)) = J(T(x)) (3)

Now, we can state our proposition as follows:

Proposition 1. Given a distribution D that is symmetric
with respect to a bijective transformation T, if operation
J and T are commutative, then DJ is also symmetric with
respect to T (aka J preserves the symmetry of D).

Proof. For all images x in distribution D, given D is sym-
metric w.r.t T we have:

D(x) = D(T(x)) (4)

And the commutativity of T and J implies:

J(T(x)) = T(J(x)) (5)

To prove that DJ is also symmetric w.r.t T, we need to show:

DJ(J(x)) = DJ(T(J(x))) (6)

The above Equation 6, using the definition of DJ in Equation
2, can be expanded to:∑

x′∈J−1(J(x))

D(x′) =
∑

x′′∈J−1(T(J(x)))

D(x′′) (7)

By symmetry of D w.r.t T, Equation 7 is equivalent to:∑
x′∈J−1(J(x))

D(T(x′)) =
∑

x′′∈J−1(T(J(x)))

D(x′′) (8)

The key to showing that this equality holds is to estab-
lish that we are summing over the same set of images on
both sides. To do this, we first define TS to be the im-
age under T of a set of images S = {x1,x2, · · · }, i.e.,
the set resulting from applying T to each image in set S:

TS(S) = {T(x1),T(x2), · · · }. With this definition, Equa-
tion 8 becomes:∑

x′∈TS(J−1(J(x)))

D(x′) =
∑

x′′∈J−1(T(J(x)))

D(x′′) (9)

For the above equality to hold, it suffices to show that
TS(J

−1(J(x))) and J−1(T(J(x))) are the same set. We
use the fact that T is a bijection, and hence has an inverse
T−1. Note that since we assume T and J are commutative,
it follows that T−1 and J are also commutative. Therefore,
for any x′ ∈ TS(J

−1(J(x))), we have that:

J(T−1(x′)) = J(x) (10)

The above Equation 10 is equivalent to the following equa-
tions:

T−1(J(x′)) = J(x) (11)

J(x′) = T(J(x)) (12)

Note that Equation 12 is equivalent to the statement that
x′ ∈ J−1(T(J(x))). Hence, because of the equivalence of
Equations 10 and 12, we show that

J−1(T(J(x))) = TS(J
−1(J(x))) (13)

thus completing the proof.

Preserving achirality vs. chirality. Note that we have not
accounted for the scenario where J removes asymmetries.
This means that while achirality is preserved, chirality may
not be. In fact, loss of chirality is almost certain to happen,
as imaging is necessarily lossy and therefore trivially creates
symmetry. However, our primary concern is determining
whether the asymmetries we learn from data are the result
of content or an artifact of processing. This question does
not apply to asymmetries we never observe. The design of a
chirality-preserving imaging system could be an interesting
problem related to computational photography, but we leave
this to future work.

2.1. Proof Based on Group Theory

Here we offer a more general proof based on group theory.
Our approach is to show that, when J commutes with T, J
maps between cyclic groups generated by T that partition
our domain. The advantage of this proof over our previous
proof is that it shows T only needs to be associative and
have an inverse (the conditions on a group operation), and it
better explains what happens when J is non-injective.

Consider a transformation T : Rn 7→ Rn that is associa-
tive and invertible, and a second transformation J : Rn 7→
Rn that commutes with T, so:

TJx = JTx (14)



We call a distribution D : Rn 7→ R symmetric with respect
to T if, for all x, we have

D(x) = D(T(x)). (15)

and we define DJ, the transformation of D by J, as

DJ(x) =
∑

xi:Jxi=x

D(xi) (16)

Proposition 2. If J commutes with T and a distribution
D is symmetric with respect to T, then the transformed
distribution DJ will also be symmetric with respect to T.

Proof. We first show that J defines a mapping between
cyclic subgroups of our domain. We then show that this
map is a homomorphism, which we use to relate DJ(x) to
DJ(T(x)).

Since T is associative and invertible, we can use it to
partition our domain into non-overlapping cyclic subgroups
〈xi〉T generated by T:

〈xi〉T = {...,T−1xi,xi,Txi,T
2xi,T

3xi, ...} (17)

where the identity element of each group cab be chosen as
any arbitrary element within the group. The group operation
· can be thought of as a permutation of our domain relative
to the identity:

Taxi ·Tbxi = Ta+bxi (18)

As each such subgroup shares the same group operation and
is closed under that operation, any two 〈xi〉T must either be
equivalent or disjoint. The order |〈xi〉T | of each subgroup
depends on the symmetries of xi with respect to T. For
example, if T is simple reflection about a particular axis
then |〈xi〉T | = 1 for images xi that are symmetric about that
axis, and |〈xi〉T | = 2 for images that are asymmetric about
that axis.

Now consider how J transforms each of the subgroups
〈xi〉T :

J〈xi〉T = {...JT−1xi,Jxi,JTxi,JT
2xi, ...} (19)

If J commutes with T, we can rewrite the above as

J〈xi〉T = {...T−1Jxi,Jxi,TJxi,T
2Jxi, ...} (20)

giving us
J〈xi〉T = 〈Jxi〉T (21)

This shows that J maps cyclic subgroups generated by T to
cyclic subgroups that can be generated by T.

Symmetry with respect to T can be restated as the condi-
tion that all elements within common cyclic subgroups gen-
erated by T should share the same probability. It is therefore
sufficient for us to show that the map J : 〈xi〉T 7→ 〈Jxi〉T is

a homomorphism, as the first isomorphism theorem ensures
the same number of equal-probability elements from 〈xi〉T
will map to each element of 〈Jxi〉T .

Recall that a homomorphism h : G 7→ H is defined by
the relation h(u · v) = h(u) · h(v). It is simple to show that
this holds for J and our cyclic subgroups when J commutes
with T:

J(Taxi ·Tbxi) = J(Ta+bxi)

= Ta+bJ(xi)

= TaJ(xi) ·TbJ(xi)

(22)

This is sufficient to prove our proposition. For completeness,
we also reformulate DJ in terms of the cyclic subgroups
〈Jxi〉T . We will use the notation 〈xi〉TD to denote an in-
dicator distribution that maps every element of 〈xi〉T to 1,
and every other element to 0. Note that any distribution we
can represent as the weighted sum of 〈xi〉TD must preserve
symmetry with respect to T. We can express D as:

D =
∑
i

D(xi)〈xi〉TD (23)

Now, using the first isomorphism theorem to account for the
case where J is non-indective, we can combine Equation 16
and 23 to write DJ as

DJ =
∑
i

(D(xi)|kJxi
|)〈Jxi〉TD (24)

where kJxi is the kernel of J : 〈xi〉T 7→ 〈Jxi〉T . This
concludes our proof.

2.2. Symmetries and Groups of Transformations

In Section 2.1 we proved Proposition 2 by showing that
J formed a homomorphism between cyclic subgroups 〈xi〉T
and 〈Jxi〉T . We now consider the case where DJ is the sum
of multiple such homomorphisms Jj

DJ(x) =
∑
j

∑
xi:Jjxi=x

D(xi) (25)

In this case, the sum of symmetric distributions is a symmet-
ric distribution, which tells us that DJ will still be symmetric.
Now note that by permuting the elements on the right side
of Equation 25, we can define a new set of transformations
that sum to the same DJ, but have a different kind of com-
mutativity, which we call glide commutativity, demonstrated
in Figure 1.

J : 〈xi〉T 7→ 〈Jxi〉T

2.3. Non-Commutativity and Chirality

What happens when J does not commute with T? Even
when this is the case, it is simple to find transformed distri-
butions DJ that are symmetric with respect to T, indicating



Figure 1. Illustration of Glide Commutativity: We can permute
the elements on the right side of Equation 25 to define Jj that may
not commute with T, but still sum to a symmetric distribution.
These Jj are characterized by a permuted commutativity relation-
ship we call glide commutativity. In this example, that relationship
is given by TJk = Jk+1T.

that the inverses of Propositions 1 and 2 do not hold. Many
trivial examples of this involve the distribution D0 : Rn 7→ 0.
For example, matrix multiplication is not commutative in
general, but it maps null vectors to null vectors, thus preserv-
ing the symmetry of D0 with respect to any linear transfor-
mation. Dependency on our choice of distribution makes
predicting the loss of symmetries more complicated. How-
ever, we can still draw some useful conclusions that are
independent of our distribution.

Proposition 3. If J does not commute with T, then there
must be some pair of elements {xa,xb}, related through T
by xb = Txa, that are mapped by J to elements {Jxa,Jxb}
such that Jxb 6= TJxa.

Proof. This proof is simple, but the result is quite informa-
tive. Consider any xi for which T and J do not commute.
If we take the pair of elements {xa = xi,xb = Txi} and
apply J, we get {Jxi,JTxi}. If T and J do not commute,
then TJxi 6= JTxi, and therefore Jxb 6= TJxa. This
concludes the proof.

Intuitively, this means that, if T and J do not commute,
then J will break certain symmetries with respect to T. Since
these symmetries partition the domain into cyclic subgroups,
we can conclude that J must create new symmetries as well.
Importantly, this can happen even when D and DJ are both
independently symmetric with respect to T. In terms of
learning, this could be a problem if, for example, if symmetry
with respect to T is derived for some distribution D and then
used in a learning task that samples data from DJ.

2.4. Commutative Residual

Given D as an achiral distribution, Equation 5 gives us a
simple criterion to determine whether achirality is preserved
in the output processed distribution DJ.

Figure 2. Example 8×8 Bayer pattern mosaic: A typical Bayer
filter mosaic consists of tiled 2×2 blocks of pixels with two green
filters and one red and one blue filter. Note that a even-sized Bayer
filter, like the one pictured, is asymmetric (mirror flipped version is
not equal to itself), while an odd-sized version of this filter pattern
would be symmetric.

By proposition 1, we know that achirality of D is pre-
served when:

J(T(x))−T(J(x)) = 0 (26)

Now we define the commutative residual image of x, denoted
EJ(x):

EJ(x) = J(T(x))−T(J(x)) (27)

We can get a rough measure of the commutativity between
an imaging processing step and a transformation on some
representative samples x by looking at the value of |EJ(x)|,
which we summarize by its average êJ(x). We refer to
êJ(x) as a commutative residual.

2.5. Evaluating the Chirality of Operations

We compare two approaches to evaluate the chirality intro-
duced to an originally achiral distribution D by an operation
J. The first approach, based on the theory we have derived
about commutativity, is to evaluate the commutative residual
with respect to J on a small representative set of sample
images. The second method, as described in our paper, is
to train a neural network to distinguish between flipped and
unflipped images sampled from a much larger, symmetric
data set that after transforming every image in that dataset
by J. Since we are more interested in demonstrating the
possibility of chiral cues brought by a low-level imaging
operator, we limited our scope of study to originally sym-
metric distributions to ensure that any learned chirality can
be attributed solely to the effect of J.

3. Demosaicing & JPEG Compression
We evaluate two standard imaging processes: Bayer de-

mosaicing (we consider the method described in [2]), and
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Figure 3. Commutativity residuals for demosaicing (left), JPEG compression (middle) and their composition (right): Each image
shows how commutativity residual, measured in absolute average percent error per pixel, varies with different image sizes. For integers n we
see commutativity in demosaicing at image widths of 2n− 1 (i.e., odd widths), and in JPEG compression at widths of 16n. We do not see
commutativity when both are applied.

Figure 4. A visual example of the commutative residual method. This figure illustrates how we apply the commutative residual method
to a natural image. Here T is the horizontal reflection operation, and J is the composition of Bayer demosaicing and JPEG compression.
The image used here has a width of 100px. For better visualization of the imperceptible differences shown in the residual image, we scale
the resulting residual by a factor of 10. Consistent with the results in Figure 3, the residual image is not zero (which would be all black), i.e.,
the commutative residual is non-zero.

JPEG compression. We start with a brief summary of these
two operations.

Bayer filters and demosaicing. Many modern digital cam-
eras (including cellphone cameras) capture color by means
of a square grid of colored filters that lies atop of the grid

of photosensors in the camera. An 8×8 example of such a
color filter grid, known as a Bayer filter mosaic, is shown
in Figure 2. In such cameras, each pixel’s sensor measures
intensity for a single color channel (red, green, or blue),
and so to produce a full color image at full resolution, we
must interpolate each color channel such that each pixel ulti-



mately has an R, G, and B value. This interpolation process
is known as demosaicing. For our analysis we assume, as is
typical, that a Bayer filter mosaic pattern consists of a tiled
2×2 element (GRBG in the case of Figure 2).

Note that the 8×8 Bayer filter mosaic in Figure 2 has
interesting symmetry properties. The 8×8 pattern as a whole
is asymmetric—flipping it horizontally will result in a red
pixel in the upper-left corner, rather than a green pixel. The
same is true for any even-sized Bayer filter mosaic. However,
from the perspective of the center of any pixel, the pattern is
locally symmetric. Moreover, if we imagine a 9×9 version
of this mosaic (or indeed any odd-sized pattern), that mosaic
would be symmetric.

JPEG compression. JPEG is one of the most common
(lossy) compression schemes for images. There are two main
ways that JPEG compresses image data. First, it converts
images into the Y′CbCr colorspace and downsamples the
chroma channels (Cb and Cr), typically by a factor of two.
Then it splits each channel into a grid of 8× 8 pixel blocks
and computes the discrete cosine transform (DCT) of each
block. In the luminance (Y′) channel, each block covers an
8×8 pixel region of the original image, while for the chroma
channels, each block corresponds to a 16×16 pixel region
in the original image, due to the 2× downsampling. Finally,
the DCT of each block is strategically quantized to further
compress the data at low perceptual cost.

For the purposes of our analysis, one noteworthy aspect
of JPEG compression is that for images with dimensions
that are not a multiple of 16, there will be boundary blocks
that do not have a full 8×8 complement of pixels. These are
handled specially by the JPEG algorithm.

3.1. Commutative Residuals and Image Size

If we evaluate commutative residuals on arbitrarily ran-
dom images for demosaicing, they will be nonzero about
half of the time. For JPEG, they will be nonzero over 90% of
the time. But if we sample over different image sizes more
systematically, a pattern begins to emerge. Figure 3 visu-
alizes the commutative residuals for random noise images
as a function of image width and height. To illustrate the
commutative residual visually, Figure 4 shows an example
of the commutative residual image for a natural image with
a width of 100px. We can see that demosaicing appears to
preserve the symmetry for images with odd widths, while
JPEG compression seems to preserve the symmetry for im-
age with widths that are divisible by 16. We can explain this
result by considering the geometry of Bayer patterns and
JPEG block grids. Bayer patterns (Figure 2) have horizontal
symmetry when reflected about any line centered on a pixel
column, while the JPEG block grid, which consists of 8×8
blocks that correspond to 8×8 or 16×16 blocks of the origi-
nal image, is horizontally symmetric only around grid lines,
which rest between columns at 16-pixel intervals.

Figure 3 shows that our black-box analysis of commuta-
tive residuals is able to reveal the grid structures underlying
both algorithms and show how each grid structure impacts
preservation of achirality. Notably, when the commutative
residual for any transformation for a given image width is
zero, we know that this transformation preserves the achi-
rality of the original distribution with such width. We also
notice that the combination of demosaicing followed by
JPEG compression can never be commutative with respect
to flipping because these two imaging processes do not have
zero commutative residual for the same image width. Note
further that the combination of these two operations is very
standard in imaging pipelines, and so we can expect results
on synthetic data to apply to real images as well. One of
the great plus of our commutative residual method is that all
of our analysis involved in generating Figure 3 can be per-
formed in just a few minutes on a laptop using unoptimized
MATLAB code.

When the commutative residual is non-zero, we further
hypothesize that such scenarios will often result in loss of
achirality, i.e., a non-commutative imaging process will
make an originally achiral distribution chiral. To verify
this, we trained deep network models on three achiral dis-
tributions of Gaussian noise images, corresponding to three
different square images sizes: one with odd width (99×99),
one with even width that is not an integer multiple of 8
(100×100), and one that is a multiple of 16 (112×112). The
results predicted by our hypothesis for demosaicing, JPEG,
and their composition are summarized in Table 1. Also, at
each pixel of each sample image, the value of each channel
was sampled from a different Gaussian distribution. For each
channel we used a different mean (R:0.6, G:0.5, B:0.9) and
standard deviation (R:0.3, G:0.25, B:0.4) to reduce the num-
ber of symmetries present other than T. A sample image,
before and after processing, is shown in Figure 5.

We used the same ResNet model as in main paper (with
randomly initialized weights) on the chirality (flip/no-flip)
task for each of these nine datasets, performing a grid search
for an optimal learning rate using a log scale. As expected,
our network model can never achieve more than 50% test
accuracy on distributions that were predicted by our analysis
to be achiral (i.e., commuative residual is zero); surprisingly,
our network achieved near perfect accuracy on the output
processed distributions resulted from non-commutative imag-
ing processes. This gave a strong empirical evidence that
non-commutativity results in loss of achirality.

Note that this analysis assumes that we use the whole
images after Bayer demosaicing and/or JPEG compression,
i.e., no cropping has taken place on the images. Interestingly,
these results mirror the situation of training networks on
real images with no random cropping, as described in the
main paper. Figure 8 shows that networks trained to classify
chirality on resized (but not cropped) Instagram images often



(a) Original Image (b) JPEG compressed

(c) Demosaicing (d) Demosaicing + JPEG
Figure 5. A sample image from our Gaussian noise image dis-
tribution after different imaging operations. This image is of
size (100,100) and is generated using the Gaussian noise method
described in Section 3.1

.

Imaging Operation Image size

99 100 112

Demosaicing A C C
JPEG C C A
Demosaicing+JPEG C C C

Table 1. Predicted chirality of three (initially achiral) Gaus-
sian noise image distributions (corresponding to three differ-
ent square image sizes) under each of three processing schemes.
‘C’ means chiral, and ‘A’ means achiral. Explanation: 99px images
should remain achiral under demosaicing, since it is odd size. 112
should remain achiral under JPEG compression since it is divisible
by 16. Everything else becomes chiral as discussed earlier. We
verify this table empirically by training network models on the nine
distributions resulting from these transformations.

seem to focus on image evidence near boundaries (first row),
which we hypothesis is due exactly to the kinds of chiral
artifacts discussed in this section. However, training with
random cropping data augmentation yields networks that
appear to focus on much more high-level features (second
row). In the next section, we discuss the interaction of
processing with random cropping (or image translation) and
how the addition of random cropping can make a chiral
imaging process achiral.

Figure 6. Glide Symmetry: Human footprints often exhibit glide
symmetry. The infinitely repeating footstep pattern shown here is
equivalent to the reflection of a shifted version of itself.

4. Random Cropping and Glide Symmetry
As our analysis makes few assumptions about T, J and

D, we can apply it to other symmetries and data augmenta-
tion strategies used in learning. For example, translational
invariance is a common and useful prior that is often ap-
plied to data through the use of random crops as a type of
data augmentation. Doersch et al. [1] found that when they
trained a network to predict the relative position of different
regions in an image, it would “cheat” by utilizing chromatic
aberration for prediction. We can use our observation about
commutativity to explain this behavior by considering a fam-
ily of transformations in the plane. The self-supervision task
used in Doersch et al. requires the network to distinguish
between different translations, which is only possible when
the following symmetry does not hold:

D(x) = D(Tv(x)) (28)

where Tv is translation by some vector v ∈ R2. Our com-
mutativity analysis tells us that this symmetry can be broken
by any J that does not commute (or glide commute) with
translation. This agrees with the findings of Doersch et al.
that the network was able to “cheat” using artifacts caused
by chromatic aberration, which is not translation-invariant,
as its effect is spatially varying.

4.1. Detecting Glide Symmetries

If we revisit our analysis of commutative residuals under
an assumption of translation invariance, we can draw new
conclusions about the chirality of demosaicing and JPEG
compression. In particular, we find that by incporporating
translation invariance in the form of random cropping, we
can change the chirality of these operations.

To test for glide-commutativity, we must look for the
permutation pattern described in Section 2.2. To do this, we
first define a way of phase-shifting T(J(x)) and J(T(x)).
For this, we define JTφ(x) and TJφ(x) as the process of:

1. Padding x with a large, constant number of pixels on
all sides.

2. Translating the padded image by φ.
3. Applying T then J for JTφ(x), or J then T for

TJφ(x).
4. Translating by T(−φ).
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Figure 7. Glide Commutativity Residuals for demosaicing (left), JPEG compression (middle) and their composition (right): Each
image shows the glide commutativity residual, measured in absolute average percent error per pixel, measured over different phase shifts.
For certain φ1 and φ2 we see commutativity in demosaicing and in jpeg compression alone. We do not see commutativity when both are
applied.

5. Cropping out the previously padded pixels.

This has the effect of performing J and T as if the image
had occurred at a translation of φ from its original position.
For grid-based algorithms like demosaicing and JPEG com-
pression, this effectively phase-shifts the grid structure used
in the algorithm.

To test for glide-commutativity we simply look for some
repeating pattern of zeros in residuals of the form:

eJ(x, φ1, φ2) =
1

k

∑
pixels

|JTφ1(x)−TJφ2(x)| (29)

This pattern of zeros describes the permutation pattern de-
scribed in Section 2.2. As the results in Figure 3 show, we
verified that the vertical components of φ1 and φ2 do not
matter. We therefore set them only to vary in the x dimension
of the image. Figure 7 shows the residuals calculated for
a range of phase shifts. We see that both demosaicing and
JPEG compression appear to be glide-commutative due to
the regular repeating pattern of zeros. However, the com-
bination of demosaicing and JPEG compression does not
appear to be glide-commutative, and we can see this is be-
cause zeros always occur at different phase shifts for each of
the two operations.

4.2. Empirical chirality in the presence of random
crops

The analysis from the previous section has simple impli-
cations (in terms of random cropping on images): (1) The
distribution of random crops (while avoiding cropping from
the boundary of 16 pixels) from an originally achiral distri-
bution of images that has undergone either demosaicing or

JPEG compression (but not both) should remain achiral. (2)
On the other hand, surprisingly, random crops (avoiding a
16-pixel margin around the boundary in the cropped image)
on that achiral distribution of images after both demosaicing
and JPEG compression may likely become chiral.

To verify this analysis empirically, we again train ResNet
models on the same achiral Gaussian distributions as intro-
duced in Section 3.1. Specifically, we take random crops of
size (512, 512) from the center (560, 560) of the (576,576)
Gaussian noise images to avoid possible boundary effects
from a 16-pixel margin. We train separate networks on each
of the three output image distributions obtained from apply-
ing each of the three imaging operations (demosaicing, JPEG
compression, and composition of demosaicing followed by
JPEG compression) on the initial Gaussian noise image dis-
tribution. Note that, as before, we perform a log-scale grid
search over learning rates.

The network training results show that neither demosaic-
ing nor JPEG compression alone is sufficient to produce a
chiral distribution under random cropping: models trained
with such images fail to achieve more than 50% accuracy.
This suggests that chirality is preserved when those oper-
ations are applied in isolation. But when both operations
are applied, surprisingly, the image distribution becomes
chiral: the trained network achieves 100% training and test
accuracy. This accords with our theoretical analysis of the
glide-commutativity under these operations. Together, our
analysis and empirical study suggest that chiral traces are
left in photographs via the Bayer demosaicing and JPEG
compression imaging processes.
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Figure 8. Class Activation Maps (CAM) resulting from two preprocessing procedures used in training ImageNet-pretrained models on the
chirality task: (top row) simple bilinear resizing and (bottom row) random cropping. Recall from the main paper that the CAM tends to fire
on discriminative regions for classification. Note the heavy focus on edge and corner regions on bilinear resized images, likely due to edge
artifacts caused by JPEG compression or demosaicing (or both). These artifacts disappear when random cropping is applied.
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