
Supplementary Material

1. Introduction

In this supplementary material, we first present the net-
work architectures of the proposed segmentation W 2-Net,
and the RGB, Texture and Contour streams of the proposed
multi-streams network. In addition, more examples of the
pill images in our proposed CURE dataset are shown. Af-
terwards, data augmentation strategies used in our study
are summarized. Moreover, more details of the experimen-
tal setup for few-shot regime is provided. Furthermore, we
provide the information of the performance evaluation met-
rics used in our study. More importantly, more experimen-
tal results are presented including 1) more pill segmenta-
tion results; 2) the two-side pill recognition results; 3) more
ablation studies. Finally, notations of all the variables and
functions are summarized in the last section.

2. Network architecture of the proposed W 2-
Net, and the RGB, Contour and Texture
streams

The architecture of the proposed W 2-Net is shown in
Fig. 1. It is consisted of four simplified U -nets: the input
of each intermediate U -net is the concatenation of (1) the
segmentation output from previous U -net, (2) the output of
the second last layer from the previous U -net and (3) the
input image.

The architectures of RGB stream is presented in Table 1,
when the ones of Contour and Texture streams are summa-
rized in Table 2. The Texture and Contour streams share
the same architecture. The only difference between their ar-
chitecture and the one of the RGB stream is the number of
channels (i.e., the network of the RGB stream has twice the
numbers of channels) at each layer. The number of parame-
ters of RGB, Contour, Texture streams are 9 M, 2.2 M and
2.2 M respectively. More complex architectures were tested
for the three streams, however, performances drop. Please
refer to Section ‘Extra ablation studies’ in this file for more
details.
3. More examples from the proposed CURE

pill image dataset

More examples of pill images in our CURE dataset are
presented in Figure 2. It could be observed that diverse
lighting, zooming, backgrounds conditions are considered.

Table 1. The CNN architecture of theRGB stream. nb C. denotes
the number of channels.

Type nb C. output size stride kernel
Input 3 128 × 128 - -
conv1 64 64 × 64 2 7 × 7
conv2 64 64 × 64 1 3 × 3
conv3 64 64 × 64 1 3 × 3
pool1 64 32 × 32 - 4 × 4
conv4 96 32 × 32 1 3 × 3
conv5 96 32 × 32 1 3 × 3
conv6 96 32 × 32 1 3 × 3
pool2 96 16 × 16 - 4 × 4
conv7 128 16 × 16 1 3 × 3
conv8 128 16 × 16 1 3 × 3
conv9 128 16 × 16 1 3 × 3
pool3 128 8 × 8 - 4 × 4

conv10 256 8 × 8 1 3 × 3
conv11 256 8 × 8 1 3 × 3
conv12 256 8 × 8 1 3 × 3
pool4 256/128 4 × 4 - 4 × 4

conv13 384 4 × 4 1 3 × 3
conv14 384 4 × 4 1 3 × 3
conv15 384 4 × 4 1 3 × 3

fc - 512 - -
reg - 256 - -

Table 2. The CNN architecture of the Texture and Contour
streams. nb C. denotes the number of channels.

Type nb C. output size stride kernel
Input 1 128 × 128 - -
conv1 32 64 × 64 2 7 × 7
conv2 32 64 × 64 1 3 × 3
conv3 32 64 × 64 1 3 × 3
pool1 32 32 × 32 - 4 × 4
conv4 48 32 × 32 1 3 × 3
conv5 48 32 × 32 1 3 × 3
conv6 48 32 × 32 1 3 × 3
pool2 48 16 × 16 - 4 × 4
conv7 64 16 × 16 1 3 × 3
conv8 64 16 × 16 1 3 × 3
conv9 64 16 × 16 1 3 × 3
pool3 64 8 × 8 - 4 × 4

conv10 128 8 × 8 1 3 × 3
conv11 128 8 × 8 1 3 × 3
conv12 128 8 × 8 1 3 × 3
pool4 128 4 × 4 - 4 × 4

conv13 192 4 × 4 1 3 × 3
conv14 192 4 × 4 1 3 × 3
conv15 192 4 × 4 1 3 × 3

fc - 256 - -
reg - 128 - -

4. Details of data augmentations strategies
used in the experiments

4.1. Pill segmentation

The W 2-net was trained using our CURE dataset. Ref-
erence images were utilized to train the network with data
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Figure 1. The W 2-net architecture.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 2. Examples of images in CURE. Row: each row corre-
sponds to one category of the pill. Column: (1) 1st column: refer-
ence images; (2) other columns: consumer images.

augmentation and the performance was tested on 20 % of
the consumer images with pixel-wise labels. To augment the
training set, we synthesized around 105 customer images
by 1) replacing the background using the texture images
from the Describable Textures Dataset [2] or background
patches manually extracted from the CURE dataset; 2) ro-
tating the labeled pill region in the range of (−180◦, 180◦);
3) changing foreground-background contrast calculated in
terms of the ratio of foreground-background illuminance;
4) randomly changing the ratio of the height/width of the
maximum circumscribed rectangle of the foreground pill
area versus the height/width of the image to mimic differ-
ent zoom in/out conditions. As thus, the network is robust
to the variance of pill sizes; 5) randomly switching the pill
location.
4.2. Stream Imprinted Text Pre-training

We first used the text regions proposal model of the
Deep TextSpotter (DTS) to generate possible text regions

and manually selected the correct text regions as ground-
truth text regions. Since imprinted texts are challenging to
be detected and recognized by DTS, for images where no
text region candidate was returned, we manually labeled
the bounding boxes for all the text regions. For those pill
images that contain no texts, the largest inscribed rectan-
gular of the pill mask obtained after pill segmentation was
taken as the ground-truth regions, and labeled with a blank
symbol ‘-’. As the imprinted text/symbol regions were la-
beled, we augmented the data by (1) blurring the text re-
gions using Gaussian filtering; (2) rotating the text boxes in
the range of (−180◦, 180◦) with a constraint that the rotated
bounding boxes should still locate within the pill.

4.3. Pill Recognition

To augment the data, we simply rotated the images in
the range of (−180◦, 180◦) for both the NIH and CURE
datasets, i.e., we employed the same data augmentation
strategy on the two datasets separately.

5. Experimental setup for few-shot regime

To compare with the state-of-the-art few-shot learning
models, we followed the experimental protocol proposed
by [6]. Similar to the experimental setup on MiniIma-
genet dataset in [3], we divided the NIH and our CURE
dataset into 16% , 64% and 20% as validation, training
and testing set according to the pills’ categories. Categories
in test set are unseen during training/validation process.
More specifically, to set up an N−way K−shots classifica-
tion/recognition problem, N unseen classes were selected,
provide the model with K different instances of each of the
N classes, and evaluate the model’s ability to classify new
instances within the N classes.

For some pill categories in the NIH dataset, there are less
than 5 instances for top/bottom side of the pill. Thus, in the
paper, we only tested the models under the 1-shot setting.
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6. Details of performance evaluation metrics
used in the experiments

6.1. Pill segmentation

• Intersection Over Union (IOU):

IOU =
pii∑2

j=1 pij +
∑2

j=0(pji − pii)
, (1)

where pii indicates the true positives, while pij and pji are
the false positives and false negatives relatively.

6.2. Imprinted text recognition

As done in [1], when the IOU of a predicted text region is
higher than 0.5 and the transcription is identical (using case-
insensitive comparison [5]), it is considered as correctly rec-
ognized. Performance is then evaluated with f-measure.

• f-measure:

f −measure =
2× precision× recall

precision+ recall
, (2)

where precision =
tp

tp+fp
, and recall =

tp
tp+fn

. tp, fp, and
fn indicates the true positives, the false positives and the
false negatives correspondingly.

6.3. Pill recognition

• Mean Average Precision (MAP):

MAP =
1

N

N∑
i=1

 1

Ni

Ni∑
j=1

j

MT (i, j)

 , (3)

where N denotes the number of consumer images, Ni

represents the number of the reference images, j is the
number of correctly matched images (i.e., 1/2), and
MT (i, j) indicates the correct ranking of the reference
images.

7. More experimental results

7.1. More pill segmentation results

More pill segmentation results on NIH and CURE
dataset are shown in Figure 3 and 4 correspondingly.
Columns in the figures from left to right are the pill im-
age, the segmented results using U -net, ESPNetV2, and
W 2-net respectively. It could be observed from Figure 3
(d-l) that W 2-net is better in preserving the shape of the
pills (smoother borders). It is verified that even the proposed
model are trained on our CURE, it could also be employed
on other pill image dataset.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 3. Examples of segmentation results on NIH. U-Net, ESP-
NetV2, W2

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 4. Examples of segmentation results on CURE. U-Net, ES-
PNetV2, W2

7.2. Two-side performance

The performance comparison results in terms of two-side
MAP, Top-1 are summarized in Table 3. As shown, in the
two-side case, the proposed model is also superior to the
state-of-the-art model MDP. Similar to [7], under two-side
setting, if one pill recognizer is able to indicate the cat-
egory of the query pill image no matter which side it is
(top/bottom), then the image is considered as accurately rec-
ognized. However, under one-side setting, top and bottom
side of one pill category are considered as different cate-
gories [8]. Therefore, the two-side setting is commonly eas-
ier than the one-side setting, and the pill recognizers could
achieve higher performance under the two-side setting.

The two-side performances of the ablative models (cor-
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responds to Table 6 in the paper) are shown in Table 4. Con-
sistent conclusions could be made: 1) Impact of individual
stream (row 2-7): the proposed MS model outperforms the
individual models. By removing a certain stream, the per-
formance drops. Domain knowledge, e.g., imprinted text,
helps to improve the recognition performance; 2) Impact
of segmentation models(row 7-9): by removing/replacing
the proposed W 2-net, the performances drop; 3) Impact of
learning batch strategy (row 8-10): the proposed two-stage
BA-BH learning strategy is superior to the traditional BH
and BA strategy.

Table 3. Performance of pill recognition models (two-side).
Database NIH CURE

MAP TOP-1 MAP TOP-1

MDP [8] 0.837 74.1 0.853 79.8
MS (ours) 0.852 77.3 0.876 84.6

Table 4. Recognition results for ablative models (two-side).
Database NIH CURE

Ablative models MAP TOP-1 MAP TOP-1

Individual Stream RGB 0.738 62.6 0.786 66.6

stream Stream Texture 0.475 34.2 0.641 49.5
Stream Contour 0.469 32.4 0.620 47.9

Impact of Without Text 0.727 64.7 0.784 70.1
domain-related Without Contour 0.801 71.5 0.842 78.3

features Without Texture 0.788 69.9 0.830 76.7

Impact of No segmentation 0.478 43.7 0.513 47.1
segmentation With U-net 0.828 74.3 0.857 78.1

Impact of With BA 0.793 71.0 0.827 74.2
strategy With BH 0.789 70.4 0.809 73.8

7.3. Extra ablation studies:

With enough samples and network parameters (net-
work with deep/complicated enough architecture), impor-
tant domain-related information, such as texture, contour
characteristics or imprinted text could be extracted and ap-
plicable for the task. But for this few-shot learning task,
we found it much more efficient to take advantage of hand-
crafted channels as domain knowledge at the first stage with
simpler networks, and then boost at the second stage.

For comparisons, we have added extra experiments on
the CURE dataset: 1) single complicated stream RGB 50%
more parameters (see row 1 in Table 5); 2) same architecture
(as the proposed stream RGB) for stream Contour and Tex-
ture (9 M) are checked (see row 2&3 in Table 5). It could
be observed that using more complicated network in a few-
shot regime does not guarantee performance gains.

7.4. Impact of margin m

Similar to [4], we tested m (in equation (4) in the pa-
per) in the range of [0, 1]. The one-side MAP values of the
proposed MS model with varying m on our CURE and the

Table 5. Extra ablation study on the CURE and NIH database.
Database NIH CURE

Model MAP TOP-1 MAP TOP-1

Stream RGB (18.1 M) 0.573 42.0 0.482 48.0
Stream Contour (9 M) 0.172 8.8 0.281 14.9
Stream Texture (9 M) 0.577 43.8 0.241 19.5

NIH dataset are depecicted in Figure 5. As shown, the per-
formance of the proposed model on the CURE dataset in-
creases steadily until it achieves highest MAP with m =
0.5, and then drops significantly after. Similar trend could
be observed for the performances of our model on the NIH
dataset. Therefore, we selected m = 0.5 in our study.

Figure 5. The impact of margin m on the performance.
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