
Supplementary Materials for
“DIST: Rendering Deep Implicit Signed Distance Function

with Differentiable Sphere Tracing”

Shaohui Liu1,3 Yinda Zhang2 Songyou Peng1,6 Boxin Shi4,7

Marc Pollefeys1,5,6 Zhaopeng Cui1
1ETH Zurich 2Google 3Tsinghua University 4Peking University 5Microsoft

6Max Planck ETH Center for Learing Systems 7Peng Cheng Laboratory

In this supplementary material, we provide detailed anal-
ysis of the proposed renderer, implementation details, and
more qualitative results.

A. More Analysis on the Design of Differen-
tiable Sphere Tracing

A.1. Benefits of Aggressive Marching

We use an aggressive strategy (Sec. 3.2 in main submis-
sion) to speed up the sphere tracing. Instead of marching
with the step size as the SDF of the current location, we
march α times of it, where α is larger than 1 and set as 1.5
by default. This brings two benefits - faster convergence
and stable training.

Faster Convergence As shown in Fig. 1, the sphere trac-
ing algorithm can become unexpectedly slow when the an-
gle between the camera ray and the surface is relatively
small. From an initial point with a ray distance d towards
the surface, the marching step k needs to satisfy the equa-
tion below to reach convergence:

|d(1− αsinθ)k| < ε, (1)

where α equals to 1.0 in the conventional sphere tracing
algorithm. When |1− αsinθ| < 1, we can easily derive the
minimum marching step needed,

k > kmin =
logε− logd

log|1− αsinθ|
. (2)

By taking an aggressive strategy with α greater than 1 (we
set it to 1.5 by default), the convergence can be speeded up
under the ill-posed conditions. For example, suppose d =
1.0, ε = 5 × 10−5, the minimum number of convergence
steps decreases from 52 to 33 when θ equals to 10 degrees.

𝜃

P
𝑑

+ −

Surface

Figure 1. Illustration of ill-posed conditions for sphere tracing al-
gorithm. When θ is relatively small, the queried SDF is much
lower than the actual ray distance d towards the surface, making
the sphere tracing process slower than expected.

Stable Training Besides speeding up the overall march-
ing, the aggressive marching also allows more samplings
from the locations behind the surface, which adds supervi-
sion at the interior of the shape and stabilize the training.
As shown in Fig. 2, in traditional ray marching, the front
end of the ray approaches the surface from the camera side
(i.e. SDF > 0) and less likely to trespass the surface. In
contrast, our marching is more likely to pass through the
surface (and for sure under the ground truth SDF when the
ray direction is orthogonal to the surface since the marching
step is larger than SDF). This will not add much computa-
tional overhead when working conjointly with the conver-
gence criteria, but achieves ray convergence from both sides
the surface. This gives the training more supervision with
both positive and negative SDF, compared to positive only
using regular marching. The aggressive marching also nat-
urally samples more points near the surface, which are im-
portant for network to learn surface details. Coincidentally,
DeepSDF [4] also mentioned the importance of sampling
more points near surface. While they need to rely on extra
ground truth normal and depth to perform the sampling, our
method is fully automatic and sample adaptively according
to the SDF field.

Figure 2. Compared to the regular ray marching algorithm, the
aggressive ray marching strategy can march inside the surface and
bounce back-and-forth between the inside and outside areas. This
gives more samples on the negative side of implicit signed distance
function and benefits the optimization.

A.2. Convergence Criteria

It is important to define a proper convergence criteria as
shown in Fig. 7 of the main submission. In our differen-
tiable sphere tracing, a ray stops marching if the absolute
SDF is smaller than certain threshold ε. Essentially, this
means that the true intersection on the surface is bounded
by a ball with radius of ε centered at our current sampling
point. There are two guidelines to select this threshold. On
one hand, the threshold should not be too large, since the
rendering noise is theoretically bounded by this threshold.
Large threshold may result in large error in the rendered
depth. On the other hand, the threshold must not be too
small. The rendering time will be significantly longer if it
is too small since more queries would be needed. More-
over, with a fixed maximum number of tracing steps, some
pixels may not converge and thus are considered as back-
ground, which causes erosion (as shown in Fig. 7 in our
main submission). Based on these two observations, we
propose to define the threshold as the distance where the
ray front ends from neighboring pixels are clearly separa-
ble. This is equivalent to finding the radius such that balls
centered at the ray front ends of neighboring pixels do not
intersect with each other. Fig. 3 demonstrates how to com-
pute the ε. For a camera with focal length f , sensor size S,
and resolution R, we get the following equation for objects
roughly dmin away from the camera, according to similar
triangles:

S/R · cos(θ)
f/cos(θ)

=
2ε

dmin
(3)

This gives:

ε =
dmin · S · cos2(θ)

2 · f ·R
(4)

Taking the common set up shown in Fig. 3, where f =
60mm, dmin = 10cm, S = 32mm,R = 512, we get
ε ≈ 0.5× 10−4m (0.05mm).

Figure 3. Illustration on the geometric meaning of the threshold ε
of the convergence criteria.

A.3. Differentiable Rendering of Silhouette

Fig. 4 shows how to render the silhouette in a dif-
ferentiable way. After running our deep sphere tracing
(Fig. 4 (a)), we render the minimal absolute SDF on each
pixel, and get the soft silhouette by substracting it by ε
(Fig. 4 (b)). In this way the binary silhouette (Fig. 4 (c))
can be easily acquired by checking whether the rendered
silhouette is positive (background) or not (foreground).

Because our rendered silhouette is fully differentiable
with respect to implicit signed distance functions and cam-
era extrinsic parameters, we can define differentiable loss
term over the rendered silhouette Sr and the ground-truth
binary silhouette Sgt. The silhouette loss Ls can be formu-
lated as below:

Ls = Sgtmax(0, Sr) + (1− Sgt)max(0,−Sr). (5)

This formulation is able to get the silhouette error dif-
ferentiably back-propagate to the optimized parameters.
Note that by using the minimum absolute query, we utilize
the nice individual property for signed distance functions,
where the nearest surface with respect to the camera ray is
optimized (as shown in Fig. 5). This strategy makes the
shape optimization smooth and effective. Intuitively, com-
bining the rendered silhouette with the distance transform
on the 2D image plane can further improve the efficacy of
the term, which is left for future work.

As discussed in the main paper, we check whether the
ray intersects with the unit sphere to generate an initializa-
tion mask, where the ray without intersection with the unit
sphere is directly set to background. To make the rendered
silhouette on those background pixels differentiable, we set
the soft silhouette value on each of those pixels to be the
distance from the origin to the corresponding camera ray
minus 1.0. This design shares similar spirits with the previ-
ous design on differentiable rendering of the silhouette. Be-
cause the distance from the origin to each of those camera
rays is always greater than 1.0, we can consistently check
whether the rendered silhouette is negative to determine its
corresponding binary silhouette.

(a) Sphere Tracing (b) min(abs(SDF)) (c) min(abs(SDF)) < ε

Figure 4. The differentiable rendering of silhouette. We take min-
imum absolute SDF value along each ray and determine the sil-
houette by checking whether the minimum absolute value is less
than the threshold ε or not. We also consider the rendered soft sil-
houette as the minimum absolute queries substracted by ε, which
is fully differentiable and feasible for optimization.

Ray (foreground pixel)Min query

Figure 5. Differentiable error propagation along the boundary of
the foreground. We can make use of the nice property of signed
distance fields to optimize the nearest surface.

parallel + dynamic + aggressive + coarse-to-fine

Figure 6. Illustration of the small artifacts induced by the aggres-
sive strategy. Small holes could occur on thin surface areas. Better
viewed when zoomed in.

A.4. Drawbacks

Most of our acceleration strategy does not affect the
rendering quality, except the aggressive marching. Fig. 6
shows the drawback of the aggressive tracing strategy. This
mostly happens for the case when the geometry is super thin
such that a single step of marching may trespass two sur-
faces. As a result, the ray front end is still considered out of
the shape and will keep marching till infinite, which causes
artifacts shown in the back part of the truck.

Another potential drawback is the well-known aliasing
effect, since for each pixel there is only one ray shot from
the pixel center. Many well-known anti-aliasing strategies
can be directly applied to our renderer to mitigate this issue.

B. Implementation Details
B.1. Network Architecture

We follow the same network architecture as DeepSDF
[4], which consists of 9 fully connected layers. Each hidden
layer has a dimension of 512. For the texture re-rendering

applications, we concatenate the shape code and texture
code together and feed the concatenated code to the tex-
ture network that employs the same architecture as the ge-
ometry network. Both the shape code and texture code has
a dimension of 256. Note that the network architecture of
DeepSDF [4] is much heavier than the backbone used in [5]
(4 layers with 256 dimensions for each). However, with our
proposed advanced sphere tracing strategies, we can pro-
duce high-resolution images within limited time consump-
tion overhead.

B.2. Implementation of Dynamic Synchronized In-
ference

Here we present some details on the implementation of
dynamic synchronized inference with the off-the-shelf deep
learning framework. We maintain a binary flag over each
camera ray during the sphere tracing process. For each
step, we concatenate all unfinished camera rays together
and perform feedforward in a batch-wise manner and map
them back to the original image resolution. Then, we check
whether the tracing on each ray converges or gets out of the
unit sphere and set the corresponding binary flags to zero.
Note that because the operation is performed on a concate-
nated tensor in the computational graph, trivially comput-
ing the minimum absolute SDF value for each ray results
in unaffordable memory consumption. To address this is-
sue, we introduce an implementation trick that the location
of each query is saved globally, and minimization is per-
formed over a detached tensor graph. After this operation,
we get the minimum K queries for each ray and feedforward
those queries again with the gradients attached. This strat-
egy enables our renderer to produce much high resolution
images (2048× 2048) on a single GTX-1080Ti.

B.3. Depth / Normal / Silhouette / Color Loss

Our method renders 2D observations in a differentiable
manner and computes the loss on the image plane. The
depth loss and normal loss are computed over the fore-
ground region determined by the rendered silhouette. For
the multi-view shape reconstruction application, we com-
pute the photometric error over the commonly visible pixels
in two views.The visibility can be determined by comput-
ing the difference ∆d between the reprojected depth from
the source view and the directly rendered depth of the target
view. In our experiments, the pixels with ∆2

d < 0.001 are
considered as visible. L1 loss is used for depth and photo-
metric error computation, and negative dot product is com-
puted to measure the loss of surface normals [2]. For the
rendered silhouette (substracting minimum absolute query
with ε), we require that the value should be negative over
the foreground and positive over the background and use
the loss term defined in Eq. (5).

B.4. More Details and Hyperparameters

Our framework is implemented in PyTorch and code will
be made publicly available. For all experiments, we use
the Adam optimizer with the initial learning rate 1e-2. To
compute the Chamfer Distance for evaluation, we sample
30k points on depth completion and 10k points on multi-
view shape reconstruction respectively. We follow the com-
mon practice to report the distance scaled by 1000. In the
multi-view scenario, the 3D shapes from the DeepSDF de-
coder may consist of structures inside some objects but the
ground-truth meshes only have the structure on the surface.
Therefore, we report the Chamfer Distance only in the di-
rection of gt→pred for fair comparison. For the sampling
stretegy when rendering depth, empirically, K = 1 already
works reasonably well. We use K = 3 for shape comple-
tion and K = 1 for the multi-view shape reconstruction.
The maximum marching step we use is 100. Empirically, a
value choice ranging from 1.2 to 1.8 can produce an effec-
tive α. Small α results in slow convergence while large α
can lead to small holes in thin areas.

For shape completion, we initialize the latent code to be
zero (which denotes the mean shape) and perform optimiza-
tion for 100 iterations. The loss weights of the depth loss
and silhouette loss are set to 10.0 and 1.0 respectively. We
also follow [4] to add an `2 regularizer over the shape code
during optimization and the loss weight of the regulariza-
tion term is set to 1.0.

For multi-view shape reconstruction under the PMO [3]
synthetic test set, for each iteration we sample 8 views uni-
formly distributed 360◦ around the object, warp each of
them and calculate the photometric loss to the closest next
view based on the estimated depth image. We downsample
input images to its half size 112 × 112 in order to back-
propagate the photometric and regularization losses from all
8 views together. Since there are 72 views provided in the
dataset for each object, we run 9 iterations for each epoch
and 20 epochs in total.

As for the real-world multi-view dataset, in contrast to
PMO [3] which uses over 100 images of an object, we only
picked between 20 and 30 views and further downsample
them from 480 × 640 to 96 × 128. 6 views are selected
during each iteration. Since the provided initial similarity
transformation is not accurate in some cases, we also opti-
mize over this similarity transformation in addition to the
shape code. We find out that it is usually enough to ac-
quire an accurate similarity transformation after only 1 or 2
epochs. The weight of the photometric loss is set to 5.0 for
both synthetic and real-world experiments.

C. Rendering Demos

We attach a video demo in the supplementary material to
show that our method can render high-resolution depth, sur-

face normals, silhouette and RGB image with various light-
ing conditions and camera viewpoints. Also, more quali-
tative results on multi-view reconstruction are included in
the video. We also show a larger version on the texture re-
rendering demo (Fig. 8 in the main paper) in Fig. 7.

D. Additional Experimental Results
D.1. Qualitative Comparison for Shape Completion

We show qualitative comparison on shape completion
under different sparsity of input depth in Fig. 8, Fig. 9 and
Fig. 10. The visual quality of our optimized mesh clearly
outperforms the baseline method DeepSDF [4]. By employ-
ing perspective camera model and using online computed
error (compared to the fixed sampling strategy in DeepSDF
[4]) to perform inverse optimization on the rendered 2D ob-
servations, our method generates less holes in the predicted
mesh when the input depth is sparse, particularly from the
original view where the input depth is captured. When the
silhouette information is available, our method can work
reasonably well when the input depth is extremely sparse.
Note that we give DeepSDF [4] the surface normal pre-
dicted by the dense ground-truth depth to make its sampling
feasible. On the contrary, we do not use the surface normal
information in the optimization of our method, which po-
tentially can further improve our performance. Our method
can generate reasonable occluded part with the assistance
of the pretrained shape model prior. However, our method
also could fail when the view of the camera cannot give suf-
ficient information and the depth completion problem be-
comes extremely ill-posed.

D.2. Qualitative Comparison for Multi-view Shape
Prediction

We firstly show more qualitative comparisons on PMO
test dataset in Fig. 11. It can be noticed that our method pro-
duces much more visually satisfactory 3D shapes with only
random initializations. In contrast, even if PMO [3] uses
a much better initialization from the encoder pretrained on
their PMO training set, their 3D shapes have low resolutions
because of the limited number of vertices. Moreover, if the
random initialized codes are applied, PMO fails to generate
reasonable 3D shapes in most of the cases. When check-
ing closely the second column in Fig. 11, the results even
converge to rather similar shapes, especially for chairs and
planes.

We also illustrate more results on the real-world multi-
view chair dataset in Fig. 12. Note that similar to PMO, we
now also optimize over the similarity transformation includ-
ing rotation, translation and scale, together with the shape
code. It can be noticed easily that our method with ran-
dom initialization again generates much superior outputs
over PMO. We also show a failure case in the last row.

LR texture 32x HR texture HR Relighting HR 2nd View

Figure 7. Qualitative results on the applications on texture re-rendering, where we can generate high-resolution outputs under various
resolution, camera viewpoints and illumination.

Our method fails when there is insufficient texture on fore-
ground or background as photometric cues. Moreover, our
method may fail when the similarity transformation can not
be correctly estimated.

References
[1] Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen

Koltun. A large dataset of object scans. arXiv preprint
arXiv:1602.02481, 2016. 10

[2] David Eigen and Rob Fergus. Predicting depth, surface nor-
mals and semantic labels with a common multi-scale convolu-
tional architecture. In Proceedings of the IEEE international
conference on computer vision, pages 2650–2658, 2015. 3

[3] Chen-Hsuan Lin, Oliver Wang, Bryan C Russell, Eli Shecht-
man, Vladimir G Kim, Matthew Fisher, and Simon Lucey.
Photometric mesh optimization for video-aligned 3d object re-
construction. In Proc. of Computer Vision and Pattern Recog-
nition (CVPR), 2019. 4

[4] Jeong Joon Park, Peter Florence, Julian Straub, Richard New-
combe, and Steven Lovegrove. Deepsdf: Learning continuous
signed distance functions for shape representation. In Proc. of
Computer Vision and Pattern Recognition (CVPR), 2019. 1,
3, 4, 6, 7, 8

[5] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein.
Scene representation networks: Continuous 3d-structure-
aware neural scene representations. In Proc. of Advances in
Neural Information Processing Systems (NeurIPS), 2019. 3

dense 50% pts 10% pts 100 pts 50 pts 20 pts

Input depth (direct view)

DeepSDF [4] (direct view)

DeepSDF [4] (second view)

DeepSDF [4] (third view)

Ours (direct view)

Ours (second view)

Ours (third view)

Ours w. mask (direct view)

Ours w. mask (second view)

Ours w. mask (third view)

Figure 8. Qualitative comparisons on shape completion under different sparsity of input depth (sofa).

dense 50% pts 10% pts 100 pts 50 pts 20 pts

Input depth (direct view)

DeepSDF [4] (direct view)

DeepSDF [4] (second view)

DeepSDF [4] (third view)

Ours (direct view)

Ours (second view)

Ours (third view)

Ours w. mask (direct view)

Ours w. mask (second view)

Ours w. mask (third view)

Figure 9. Qualitative comparisons on shape completion under different sparsity of input depth (plane).

dense 50% pts 10% pts 100 pts 50 pts 20 pts

Input depth (direct view)

DeepSDF [4] (direct view)

DeepSDF [4] (second view)

DeepSDF [4] (third view)

Ours (direct view)

Ours (second view)

Ours (third view)

Ours w. mask (direct view)

Ours w. mask (second view)

Ours w. mask (third view)

Figure 10. Qualitative comparisons on shape completion under different sparsity of input depth (table).

Video sequence PMO (rand init) PMO Ours (rand init)

Figure 11. More quatitative comparisons on 3D shape prediction from multi-view images on the PMO test set.

Video sequence PMO Ours (rand init)

Figure 12. More Comparisons on 3D shape prediction from multi-view images on real-world chair dataset [1]. It is in general challenging
for shape prediction on real images. Comparatively, our method produces more reasonable results with correct structure.

