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A. Geometric derivations of the elliptical re-
gion

Here we present the analytic form of the centre c, semi-
major axis y, and semi-minor axis z of the elliptical region
L (see Sec. 3.1 in the main text) following the method in [1,
2] (subscript i and explicit dependency on B are omitted
for simplicity). See Fig. 2a in the main text for a visual
representation of the aforementioned geometric entities.

1. Calculate direction of the cone-beam

û =
R(t;ωc)ũ

‖R(t;ωc)ũ‖2
, (1)

its radius
r = sinα(B), (2)

and the norm vector to the image plane n̂ = [0 0 1]T .

2. Calculate the semi-major axis direction within the
cone-beam

ŷ =
û× (û× n̂)

‖û× (û× n̂)‖
(3)

and semi-minor axis direction

ẑ =
ŷ × n̂

‖ŷ × n̂‖
. (4)

3. Calculate the intersecting points between the ray with
the direction of the semi-major axis and the cone-beam

y(a) = û− rŷ
y(b) = û+ rŷ,

(5)

and the analogous points for the semi-minor axis

z(a) = û− rẑ
z(b) = û+ rẑ.

(6)

4. Obtain y′(a), y′(b), z′(a) and z′(b) as the projection
of (5) and (6) into the image plane with the intrinsic
matrix K.

5. Calculate c = 0.5(y′(a)+y′(b)), y = ‖y′(a)−y′(b)‖2,
and z = ‖z′(a) − z′(b)‖2.

B. Proofs
We state our integer quadratic problem again.

S
∗
d(B) = max

Z∈{0,1}N×K

K∑
k=1

(
N∑
i=1

Zi,kMi,k

)2

s.t. Zi,k ≤Mi,k, ∀i, k,
K∑
k=1

Zi,k = 1, ∀i.

(IQP)

B.1. Proof of Lemma 1 in the main text

Lemma 1.

Hc(xj ;B) ≥ max
ω∈B

Hc(xj ;ω) (7)

with equality achieved if B is singleton, i.e., B = {ω}.

Proof. This lemma can be demonstrated by contradiction.
Let ω∗ be the optimiser for the RHS of (7). If

Hc(xj ;ω
∗) > Hc(xj ;B), (8)

it follows from the definition of pixel intensity (Eq. (1) in
the main text) and its upper bound (Eq. (23) in the main
text) that

‖xj−f(ui, ti,ω∗)‖ < max (‖xj − ci(B)‖ − ‖yi(B)‖, 0) ,
(9)

for at least one i = 1, . . . , N .
In words, the shortest distance between xj and the disc

Di(B) is greater than the distance between xj and the op-
timal position f(ui, ti,ω∗). However, f(ui, ti,ω∗) is al-
ways inside the disc Di(B), and hence Eq. (9) cannot hold.
If B = {ω}, then from definition (23) in the main text
Hc(xj ;B) = Hc(xj ;ω).

B.2. Proof of Lemma 2 in the main text

Lemma 2.

S
∗
d(B) ≥ max

ω∈B

P∑
j=1

Hd(xj ;ω)2, (10)
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with equality achieved if B is singleton, i.e., B = {ω}.

Proof. We pixel-wisely reformulate IQP:

S
∗
d(B) = max

Q∈{0,1}N×P

P∑
j=1

(
N∑
i=1

Qi,j

)2

s.t. Qi,j ≤ Ti,j , ∀i, j,
P∑
j=1

Qi,j = 1, ∀i,

(P-IQP)

and we express the RHS of (10) as a mixed integer quadratic
program:

max
ω∈B,Q∈{0,1}N×P

P∑
j=1

(
N∑
i=1

Qi,j

)2

s.t. Qi,j = I(f(ui, ti; ω) in xj), ∀i, j.
(MIQP)

Problem P-IQP is a relaxed version of MIQP - hence (10)
holds - as for every ei, the feasible pixel xj is in
Di(B); whereas for MIQP, the feasible pixel is dictated
by a single ω ∈ B. If B collapses into ω, every
event ei can intersect only one pixel xj , hence Ti,j =

I(f(ui, ti; ω) in xj), ∀i, j;
∑P
j=1 Ti,j = 1, ∀i; and∑P

j=1 Qi,j = 1 =⇒ Qi,j = Ti.j ,∀i; therefore, MIQP
is equivalent to P-IQP if B = {ω}.

B.3. Proof of Lemma 3 in the main text

Lemma 3. Problem IQP has the same solution if M is re-
placed with M′.

Proof. We show that removing an arbitrary non-dominant
column from M does not change the solution of IQP. With-
out loss of generality, assume the last column of M is non-
dominant. Equivalent to solving IQP on M without its last
column is the following IQP reformulation:

S
∗
d(B) = max

Z∈{0,1}N×K

K−1∑
k=1

(
N∑
i=1

Zi,kMi,k

)2

+ (11a)

(
N∑
i=1

Zi,KMi,K

)2

(11b)

s.t. Zi,k ≤Mi,k, ∀i, k, (11c)
K∑
k=1

Zi,k = 1, ∀i, (11d)

Zi,K = 0, ∀i, (11e)

which is same as IQP but with additional constraint (11e).
Since M:,K is non-dominant, it must exists a dominant col-
umn M:,η such that

Mi,K ≤Mi,η, ∀i. (12)

Hence, if Mi,K = 1, then Mi,η = 1 must holds ∀i.
Let Z∗ be the optimiser of IQP with Z∗ia,K , . . . ,Z

∗
ib,K

=
1. Let define Z′∗ same as Z∗ but with Z′∗:,K = 0 and
Z′∗ia,η, . . . ,Z

′∗
ib,η

= 1. In words, we “move” the 1 values
from the last column to its dominant one. We show that Z′∗

is an equivalent solution (same objective value than Z∗).
Z′∗ is feasible since (12) ensures condition (11c), (11d) is
not affected by “moving ones” in the same row, and (11e) is
true for the definition of Z′∗. Finally we show that

N∑
i=1

Z∗i,KMi,K =

N∑
i=1

Z′∗i,ηMi,η (13)

therefore Z′∗ produces same objective value than IQP. We
prove (13) by contradiction. Assume exists at least one
i′ 6∈ {ia, . . . , ib} such that Z∗i′,η = 1 =⇒ Z′∗i′,η = 1.
Then, Z′∗ produces a larger objective value than Z∗ which
is a contradiction since problem (11) is most restricted
than IQP. Thus, removing any arbitrary non-dominant col-
umn will not change the solution which implies this is also
true if we remove all non-dominant columns (i.e., if we re-
place M with M′).

B.4. Proof of Lemma 4 in the main text

Lemma 4.

Sd(B) ≥ S
∗
d(B) (14)

with equality achieved if B is singleton, i.e., B = {ω}.

Proof. To prove (14), it is enough to show

Sd(B) = max
Z∈{0,1}N×K′

K′∑
k=1

(
N∑
i=1

Zi,kM
′
i,k

)2

s.t. Zi,k ≤M′i,k, ∀i, k,
K′∑
k=1

N∑
i=1

Zi,k = N,

(R-IQP)

is a valid relaxation of IQP. This is true as the constraint∑K′

k=1

∑N
i=1 Zi,k = N in R-IQP is a necessary but not

sufficient condition for the constraints
∑K′

k=1 Zi,k = 1,∀i
in IQP. If B collapse into ω, every event ei can intersect
only one CC Gk =⇒

∑K′

k=1 Zi,k = 1; hence, R-IQP is
equivalent to IQP.
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B.5. Proof of lower bound (39) in the main text

Lemma 5.

Hc(xj ;B) ≤ min
ω∈B

Hc(xj ;ω) (15)

with equality achieved if B is singleton, i.e., B = {ω}.
Proof. Analogous to Lemma 1, we prove this Lemma by
contradiction. Let ω∗ be the optimiser for the RHS of (15).
If

Hc(xj ;ω
∗) < Hc(xj ;B), (16)

it follows from the definition of pixel intensity (Eq. (1) in
the main text) and its lower bound (Eq. (39) in the main
text) that

‖xj − f(ui, ti,ω∗)‖ > ‖xj − ci(B)‖+ ‖yi(B)‖, (17)

for at least one i = 1, . . . , N .
In words, the longest distance between xj and the disc

Di(B) is less than the distance between xj and the opti-
mal position f(ui, ti,ω

∗). However, f(ui, ti,ω∗) is al-
ways inside the discDi(B), and hence Eq. (17) cannot hold.
If B = {ω}, then from definition (39) in the main text
Hc(xj ;B) = Hc(xj ;ω).

B.6. Proof of lower bound (41) in the main text

Lemma 6.

µ
d
(B) ≤ min

ω∈B

1

P

P∑
j=1

Hd(xj ;ω), (18)

with equality achieved if B is singleton, i.e., B = {ω}.
Proof. This lemma can be demonstrated by contradiction.
Let ω∗ be the optimiser of the RHS of (18). If

1

P

P∑
j=1

Hd(xj ;ω
∗) < µ

d
(B), (19)

after replacing the pixel intensity and the lower bound pixel
value with they definitions (Eqs. (3) and (41) in the main
text) in (19), it leads to

N∑
i=1

P∑
j=1

I(f(ui, ti; ω∗) lies in pixel xj) (20a)

<

N∑
i=1

I(Di fully lie in the image plane). (20b)

In words, for every warped event f(ui, ti; ω∗) ∈ Di that
lies in any pixel xj ∈ X of the image plane, the discs Di
must fully lie in the image plane. Since (20a) is a less re-
stricted problem than (20b), (19) cannot hold. If B = {ω},
Di = f(ui, ti; ω); therefore, the two sides in (18) are
equivalent.

C. Additional qualitative results
Figs. 1, 2 and 3 show additional motion compensation

results (Sec. 4.2 in the main text) for subsequences from
boxes, dynamic and poster.
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Figure 1. Qualitative results (motion compensated event images) for boxes.
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Figure 2. Qualitative results (motion compensated event images) for dynamic.
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Figure 3. Qualitative results (motion compensated event images) for poster.
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