Supplementary material for:

Globally Optimal Contrast Maximisation for Event-based Motion Estimation

Daqi Liu Álvaro Parra Tat-Jun Chin School of Computer Science, The University of Adelaide

{daqi.liu, alvaro.parrabustos, tat-jun.chin}@adelaide.edu.au

A. Geometric derivations of the elliptical region

Here we present the analytic form of the centre \mathbf{c} , semimajor axis \mathbf{y} , and semi-minor axis \mathbf{z} of the elliptical region \mathcal{L} (see Sec. 3.1 in the main text) following the method in [1, 2] (subscript i and explicit dependency on \mathbb{B} are omitted for simplicity). See Fig. 2a in the main text for a visual representation of the aforementioned geometric entities.

1. Calculate direction of the cone-beam

$$\hat{\mathbf{u}} = \frac{\mathbf{R}(t; \boldsymbol{\omega}_{\mathbf{c}})\tilde{\mathbf{u}}}{\|\mathbf{R}(t; \boldsymbol{\omega}_{\mathbf{c}})\tilde{\mathbf{u}}\|_{2}},\tag{1}$$

its radius

$$r = \sin \alpha(\mathbb{B}),\tag{2}$$

and the norm vector to the image plane $\hat{\mathbf{n}} = [0 \ 0 \ 1]^T$.

Calculate the semi-major axis direction within the cone-beam

$$\hat{\mathbf{y}} = \frac{\hat{\mathbf{u}} \times (\hat{\mathbf{u}} \times \hat{\mathbf{n}})}{\|\hat{\mathbf{u}} \times (\hat{\mathbf{u}} \times \hat{\mathbf{n}})\|}$$
(3)

and semi-minor axis direction

$$\hat{\mathbf{z}} = \frac{\hat{\mathbf{y}} \times \hat{\mathbf{n}}}{\|\hat{\mathbf{y}} \times \hat{\mathbf{n}}\|}.$$
 (4)

3. Calculate the intersecting points between the ray with the direction of the semi-major axis and the cone-beam

$$\mathbf{y}^{(a)} = \hat{\mathbf{u}} - r\hat{\mathbf{y}}$$

$$\mathbf{y}^{(b)} = \hat{\mathbf{u}} + r\hat{\mathbf{y}},$$
(5)

and the analogous points for the semi-minor axis

$$\mathbf{z}^{(a)} = \hat{\mathbf{u}} - r\hat{\mathbf{z}}$$

$$\mathbf{z}^{(b)} = \hat{\mathbf{u}} + r\hat{\mathbf{z}}.$$
(6)

- 4. Obtain $\mathbf{y}'^{(a)}$, $\mathbf{y}'^{(b)}$, $\mathbf{z}'^{(a)}$ and $\mathbf{z}'^{(b)}$ as the projection of (5) and (6) into the image plane with the intrinsic matrix \mathbf{K} .
- 5. Calculate $\mathbf{c} = 0.5(\mathbf{y}'^{(a)} + \mathbf{y}'^{(b)}), \mathbf{y} = \|\mathbf{y}'^{(a)} \mathbf{y}'^{(b)}\|_2,$ and $\mathbf{z} = \|\mathbf{z}'^{(a)} \mathbf{z}'^{(b)}\|_2.$

B. Proofs

We state our integer quadratic problem again.

$$\overline{S}_{d}^{*}(\mathbb{B}) = \max_{\mathbf{Z} \in \{0,1\}^{N \times K}} \quad \sum_{k=1}^{K} \left(\sum_{i=1}^{N} \mathbf{Z}_{i,k} \mathbf{M}_{i,k} \right)^{2}$$
s.t.
$$\mathbf{Z}_{i,k} \leq \mathbf{M}_{i,k}, \ \forall i, k,$$
 (IQP)
$$\sum_{k=1}^{K} \mathbf{Z}_{i,k} = 1, \ \forall i.$$

B.1. Proof of Lemma 1 in the main text

Lemma 1.

$$\overline{H}_c(\mathbf{x}_j; \mathbb{B}) \ge \max_{\boldsymbol{\omega} \in \mathbb{B}} H_c(\mathbf{x}_j; \boldsymbol{\omega})$$
 (7)

with equality achieved if \mathbb{B} is singleton, i.e., $\mathbb{B} = \{\omega\}$.

Proof. This lemma can be demonstrated by contradiction. Let ω^* be the optimiser for the RHS of (7). If

$$H_c(\mathbf{x}_i; \boldsymbol{\omega}^*) > \overline{H}_c(\mathbf{x}_i; \mathbb{B}),$$
 (8)

it follows from the definition of pixel intensity (Eq. (1) in the main text) and its upper bound (Eq. (23) in the main text) that

$$\|\mathbf{x}_j - f(\mathbf{u}_i, t_i, \boldsymbol{\omega}^*)\| < \max(\|\mathbf{x}_j - \mathbf{c}_i(\mathbb{B})\| - \|\mathbf{y}_i(\mathbb{B})\|, 0),$$
(9)

for at least one $i = 1, \dots, N$.

In words, the shortest distance between \mathbf{x}_j and the disc $\mathcal{D}_i(\mathbb{B})$ is greater than the distance between \mathbf{x}_j and the optimal position $f(\mathbf{u}_i, t_i, \boldsymbol{\omega}^*)$. However, $f(\mathbf{u}_i, t_i, \boldsymbol{\omega}^*)$ is always inside the disc $\mathcal{D}_i(\mathbb{B})$, and hence Eq. (9) cannot hold. If $\mathbb{B} = \{\boldsymbol{\omega}\}$, then from definition (23) in the main text $\overline{H}_c(\mathbf{x}_j; \mathbb{B}) = H_c(\mathbf{x}_j; \boldsymbol{\omega})$.

B.2. Proof of Lemma 2 in the main text

Lemma 2.

$$\overline{S}_d^*(\mathbb{B}) \ge \max_{\boldsymbol{\omega} \in \mathbb{B}} \sum_{j=1}^P H_d(\mathbf{x}_j; \boldsymbol{\omega})^2, \tag{10}$$

with equality achieved if \mathbb{B} is singleton, i.e., $\mathbb{B} = \{\omega\}$.

Proof. We pixel-wisely reformulate IQP:

$$\overline{S}_{d}^{*}(\mathbb{B}) = \max_{\mathbf{Q} \in \{0,1\}^{N \times P}} \quad \sum_{j=1}^{P} \left(\sum_{i=1}^{N} \mathbf{Q}_{i,j}\right)^{2}$$
s.t.
$$\mathbf{Q}_{i,j} \leq \mathbf{T}_{i,j}, \ \forall i, j, \quad \text{(P-IQP)}$$

$$\sum_{j=1}^{P} \mathbf{Q}_{i,j} = 1, \ \forall i,$$

and we express the RHS of (10) as a mixed integer quadratic program:

$$\begin{aligned} \max_{\boldsymbol{\omega} \in \mathbb{B}, \mathbf{Q} \in \{0,1\}^{N \times P}} \quad & \sum_{j=1}^{P} \left(\sum_{i=1}^{N} \mathbf{Q}_{i,j} \right)^{2} \\ \text{s.t.} \quad & \mathbf{Q}_{i,j} = \mathbb{I}(f(\mathbf{u}_{i}, t_{i}; \boldsymbol{\omega}) \text{ in } \mathbf{x}_{j}), \ \forall i, j. \end{aligned} \tag{MIQP}$$

Problem P-IQP is a relaxed version of MIQP - hence (10) holds - as for every e_i , the feasible pixel \mathbf{x}_j is in $\mathcal{D}_i(\mathbb{B})$; whereas for MIQP, the feasible pixel is dictated by a single $\boldsymbol{\omega} \in \mathbb{B}$. If \mathbb{B} collapses into $\boldsymbol{\omega}$, every event e_i can intersect only one pixel \mathbf{x}_j , hence $\mathbf{T}_{i,j} = \mathbb{I}(f(\mathbf{u}_i, t_i; \boldsymbol{\omega}) \text{ in } \mathbf{x}_j), \ \forall i, j; \ \sum_{j=1}^P \mathbf{T}_{i,j} = 1, \ \forall i; \text{ and} \ \sum_{j=1}^P \mathbf{Q}_{i,j} = 1 \implies \mathbf{Q}_{i,j} = \mathbf{T}_{i,j}, \forall i; \text{ therefore, MIQP}$ is equivalent to P-IQP if $\mathbb{B} = \{\boldsymbol{\omega}\}$.

B.3. Proof of Lemma 3 in the main text

Lemma 3. Problem IQP has the same solution if M is replaced with M'.

Proof. We show that removing an arbitrary non-dominant column from M does not change the solution of IQP. Without loss of generality, assume the last column of M is non-dominant. Equivalent to solving IQP on M without its last column is the following IQP reformulation:

$$\overline{S}_{d}^{*}(\mathbb{B}) = \max_{\mathbf{Z} \in \{0,1\}^{N \times K}} \quad \sum_{k=1}^{K-1} \left(\sum_{i=1}^{N} \mathbf{Z}_{i,k} \mathbf{M}_{i,k}\right)^{2} + \text{ (11a)}$$

$$\left(\sum_{i=1}^{N} \mathbf{Z}_{i,K} \mathbf{M}_{i,K}\right)^{2} \quad \text{ (11b)}$$

s.t.
$$\mathbf{Z}_{i,k} \leq \mathbf{M}_{i,k}, \ \forall i, k,$$
 (11c)

$$\sum_{k=1}^{K} \mathbf{Z}_{i,k} = 1, \quad \forall i, \tag{11d}$$

$$\mathbf{Z}_{i,K} = 0, \ \forall i, \tag{11e}$$

which is same as IQP but with additional constraint (11e). Since $\mathbf{M}_{:,K}$ is non-dominant, it must exists a dominant column $\mathbf{M}_{:,n}$ such that

$$\mathbf{M}_{i,K} \le \mathbf{M}_{i,\eta}, \ \forall i. \tag{12}$$

Hence, if $\mathbf{M}_{i,K}=1$, then $\mathbf{M}_{i,\eta}=1$ must holds $\forall i$. Let \mathbf{Z}^* be the optimiser of \mathbf{IQP} with $\mathbf{Z}^*_{i_a,K},\ldots,\mathbf{Z}^*_{i_b,K}=1$. Let define \mathbf{Z}'^* same as \mathbf{Z}^* but with $\mathbf{Z}'^*_{i_a,K}=0$ and $\mathbf{Z}'^*_{i_a,\eta},\ldots,\mathbf{Z}'^*_{i_b,\eta}=1$. In words, we "move" the 1 values from the last column to its dominant one. We show that \mathbf{Z}'^* is an equivalent solution (same objective value than \mathbf{Z}^*). \mathbf{Z}'^* is feasible since (12) ensures condition (11c), (11d) is not affected by "moving ones" in the same row, and (11e) is true for the definition of \mathbf{Z}'^* . Finally we show that

$$\sum_{i=1}^{N} \mathbf{Z}_{i,K}^{*} \mathbf{M}_{i,K} = \sum_{i=1}^{N} \mathbf{Z}_{i,\eta}^{\prime *} \mathbf{M}_{i,\eta}$$
 (13)

therefore \mathbf{Z}'^* produces same objective value than IQP. We prove (13) by contradiction. Assume exists at least one $i' \notin \{i_a,\ldots,i_b\}$ such that $\mathbf{Z}_{i',\eta}^*=1 \implies \mathbf{Z}_{i',\eta}'^*=1$. Then, \mathbf{Z}'^* produces a larger objective value than \mathbf{Z}^* which is a contradiction since problem (11) is most restricted than IQP. Thus, removing any arbitrary non-dominant column will not change the solution which implies this is also true if we remove all non-dominant columns (*i.e.*, if we replace \mathbf{M} with \mathbf{M}').

B.4. Proof of Lemma 4 in the main text

Lemma 4.

$$\overline{S}_d(\mathbb{B}) \ge \overline{S}_d^*(\mathbb{B}) \tag{14}$$

with equality achieved if \mathbb{B} is singleton, i.e., $\mathbb{B} = \{\omega\}$.

Proof. To prove (14), it is enough to show

$$\overline{S}_{d}(\mathbb{B}) = \max_{\mathbf{Z} \in \{0,1\}^{N \times K'}} \quad \sum_{k=1}^{K'} \left(\sum_{i=1}^{N} \mathbf{Z}_{i,k} \mathbf{M}'_{i,k} \right)^{2}$$
s.t.
$$\mathbf{Z}_{i,k} \leq \mathbf{M}'_{i,k}, \quad \forall i, k, \quad \text{(R-IQP)}$$

$$\sum_{k=1}^{K'} \sum_{i=1}^{N} \mathbf{Z}_{i,k} = N,$$

is a valid relaxation of IQP. This is true as the constraint $\sum_{k=1}^{K'} \sum_{i=1}^{N} \mathbf{Z}_{i,k} = N$ in R-IQP is a necessary but not sufficient condition for the constraints $\sum_{k=1}^{K'} \mathbf{Z}_{i,k} = 1, \forall i$ in IQP. If $\mathbb B$ collapse into $\boldsymbol{\omega}$, every event \boldsymbol{e}_i can intersect only one CC $\mathcal{G}_k \implies \sum_{k=1}^{K'} \mathbf{Z}_{i,k} = 1$; hence, R-IQP is equivalent to IQP.

B.5. Proof of lower bound (39) in the main text Lemma 5.

$$\underline{H}_c(\mathbf{x}_j; \mathbb{B}) \le \min_{\boldsymbol{\omega} \in \mathbb{B}} H_c(\mathbf{x}_j; \boldsymbol{\omega})$$
 (15)

with equality achieved if \mathbb{B} is singleton, i.e., $\mathbb{B} = \{\omega\}$.

Proof. Analogous to Lemma 1, we prove this Lemma by contradiction. Let ω^* be the optimiser for the RHS of (15). If

$$H_c(\mathbf{x}_i; \boldsymbol{\omega}^*) < \underline{H}_c(\mathbf{x}_i; \mathbb{B}),$$
 (16)

it follows from the definition of pixel intensity (Eq. (1) in the main text) and its lower bound (Eq. (39) in the main text) that

$$\|\mathbf{x}_j - f(\mathbf{u}_i, t_i, \boldsymbol{\omega}^*)\| > \|\mathbf{x}_j - \mathbf{c}_i(\mathbb{B})\| + \|\mathbf{y}_i(\mathbb{B})\|, \quad (17)$$
 for at least one $i = 1, \dots, N$.

In words, the longest distance between \mathbf{x}_j and the disc $\mathcal{D}_i(\mathbb{B})$ is less than the distance between \mathbf{x}_j and the optimal position $f(\mathbf{u}_i, t_i, \omega^*)$. However, $f(\mathbf{u}_i, t_i, \omega^*)$ is always inside the disc $\mathcal{D}_i(\mathbb{B})$, and hence Eq. (17) cannot hold. If $\mathbb{B} = \{\omega\}$, then from definition (39) in the main text $\underline{H}_c(\mathbf{x}_j; \mathbb{B}) = H_c(\mathbf{x}_j; \omega)$.

B.6. Proof of lower bound (41) in the main text Lemma 6.

$$\underline{\mu}_d(\mathbb{B}) \le \min_{\boldsymbol{\omega} \in \mathbb{B}} \frac{1}{P} \sum_{j=1}^P H_d(\mathbf{x}_j; \boldsymbol{\omega}),$$
 (18)

with equality achieved if \mathbb{B} is singleton, i.e., $\mathbb{B} = \{\omega\}$.

Proof. This lemma can be demonstrated by contradiction. Let ω^* be the optimiser of the RHS of (18). If

$$\frac{1}{P} \sum_{j=1}^{P} H_d(\mathbf{x}_j; \boldsymbol{\omega}^*) < \underline{\mu}_d(\mathbb{B}), \tag{19}$$

after replacing the pixel intensity and the lower bound pixel value with they definitions (Eqs. (3) and (41) in the main text) in (19), it leads to

$$\sum_{i=1}^{N} \sum_{j=1}^{P} \mathbb{I}(f(\mathbf{u}_i, t_i; \boldsymbol{\omega}^*) \text{ lies in pixel } \mathbf{x}_j)$$
 (20a)

$$< \sum_{i=1}^{N} \mathbb{I}(\mathcal{D}_i \text{ fully lie in the image plane}).$$
 (20b)

In words, for every warped event $f(\mathbf{u}_i, t_i; \boldsymbol{\omega}^*) \in \mathcal{D}_i$ that lies in any pixel $\mathbf{x}_j \in X$ of the image plane, the discs \mathcal{D}_i must fully lie in the image plane. Since (20a) is a less restricted problem than (20b), (19) cannot hold. If $\mathbb{B} = \{\boldsymbol{\omega}\}$, $\mathcal{D}_i = f(\mathbf{u}_i, t_i; \boldsymbol{\omega})$; therefore, the two sides in (18) are equivalent.

C. Additional qualitative results

Figs. 1, 2 and 3 show additional motion compensation results (Sec. 4.2 in the main text) for subsequences from *boxes*, *dynamic* and *poster*.

References

- [1] Rolf Clackdoyle and Catherine Mennessier. Centers and centroids of the cone-beam projection of a ball. *Physics in Medicine & Biology*, 56(23):7371, 2011. 1
- [2] Yinlong Liu, Yuan Dong, Zhijian Song, and Manning Wang. 2d-3d point set registration based on global rotation search. *IEEE Transactions on Image Processing*, 28(5):2599–2613, 2018.

Figure 1. Qualitative results (motion compensated event images) for *boxes*.

Figure 2. Qualitative results (motion compensated event images) for *dynamic*.

Figure 3. Qualitative results (motion compensated event images) for *poster*.