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A. Geometric derivations of the elliptical re-
gion

Here we present the analytic form of the centre c, semi-
major axis y, and semi-minor axis z of the elliptical region
L (see Sec. 3.1 in the main text) following the method in [1,

] (subscript ¢ and explicit dependency on B are omitted
for simplicity). See Fig. 2a in the main text for a visual
representation of the aforementioned geometric entities.

1. Calculate direction of the cone-beam
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and the norm vector to the image plane i = [0 0 1]7.

2. Calculate the semi-major axis direction within the
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3. Calculate the intersecting points between the ray with
the direction of the semi-major axis and the cone-beam
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and the analogous points for the semi-minor axis
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2z =G+ rz.

4. Obtain y'(@), y'®) 2/(@) and 2/®) as the projection
of (5) and (6) into the image plane with the intrinsic
matrix K.

5. Calculate ¢ = 0.5(y’(a) +yl(b)), y= ||y/(a) —y'® ll2,
and z = ||2/(®) — 2/ ||,.

B. Proofs
We state our integer quadratic problem again.
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B.1. Proof of Lemma 1 in the main text
Lemma 1.

H.(x;;B) > max H.(x;;w) @)

weB
with equality achieved if B is singleton, i.e., B = {w}.

Proof. This lemma can be demonstrated by contradiction.
Let w™ be the optimiser for the RHS of (7). If

Hc(xj;""*) >Fc(xj;B)v (8)

it follows from the definition of pixel intensity (Eq. (1) in
the main text) and its upper bound (Eq. (23) in the main
text) that

l[xj = f (ui, s, ") || < max ([|x; — c;(B)|| - [ly:(B)],0),
)
for at leastonei =1,..., N.

In words, the shortest distance between x; and the disc
D;(B) is greater than the distance between x; and the op-
timal position f(u;,t;,w*). However, f(u;,t;,w*) is al-
ways inside the disc D;(B), and hence Eq. (9) cannot hold.
If B = {w}, then from definition (23) in the main text

Fc(x]—;lﬂ%) = H.(xj;w). O

B.2. Proof of Lemma 2 in the main text

Lemma 2.

P
gZ(B) > rgg}? Z;Hd(xj;wf, (10)
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with equality achieved if B is singleton, i.e., B = {w}.

Proof. We pixel-wisely reformulate IQP:
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and we express the RHS of (10) as a mixed integer quadratic
program:
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s.t. Qz = (f(uiati; w) in Xj)v Vi, j.
(MIQP)

(P-IQP)

Problem P-IQP is a relaxed version of MIQP - hence (10)
holds - as for every e;, the feasible pixel x; is in
D;(B); whereas for MIQP, the feasible pixel is dictated
by a single w € B. If B collapses into w, every
event e; can intersect only one pixel x;, hence T;; =
I(f(u;, t;; w) in x;), Vi,7; Zle T,; = 1, Vi; and
Zle Q. =1 = Q,; = T,;,Vi therefore, MIQP
is equivalent to P-IQP if B = {w}.

O

B.3. Proof of Lemma 3 in the main text

Lemma 3. Problem IQP has the same solution if M is re-
placed with M.

Proof. We show that removing an arbitrary non-dominant
column from M does not change the solution of IQP. With-
out loss of generality, assume the last column of M is non-
dominant. Equivalent to solving IQP on M without its last
column is the following IQP reformulation:
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which is same as IQP but with additional constraint (11¢).
Since M. g is non-dominant, it must exists a dominant col-
umn M. ,, such that

M, < M,,, Vi. (12)

Hence, if M; g = 1, then M;, = 1 must holds Vi.
Let Z* be the optimiser of IQP with Z7 ..., 2} , =
1. Let define Z"* same as Z* but with Z7 = 0 and
z; ..., 27, = 1. In words, we “move” the 1 values
from the last column to its dominant one. We show that Z"*
is an equivalent solution (same objective value than Z*).
Z'* is feasible since (12) ensures condition (11c¢), (11d) is
not affected by “moving ones” in the same row, and (1 1e) is
true for the definition of Z’*. Finally we show that

N N
Z Z; (M, ¢ = Z Z7 M, (13)
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therefore Z'* produces same objective value than IQP. We
prove (13) by contradiction. Assume exists at least one

i" & {ig,...,ip} such that Z}, =1 = Z’*77 1.
Then Z'* produces a larger obJectlve value than Z* which
is a contradiction since problem (11) is most restricted
than IQP. Thus, removing any arbitrary non-dominant col-
umn will not change the solution which implies this is also
true if we remove all non-dominant columns (i.e., if we re-
place M with M).

O
B.4. Proof of Lemma 4 in the main text
Lemma 4.
Sa(B) > S,(B) (14)
with equality achieved if B is singleton, i.e., B = {w}.
Proof. To prove (14), it is enough to show
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is a Vahd relaxation of IQP. This is true as the constraint
Z ik = IV in R-IQP is a necessary but not
sufﬁcwnt COIldlthH for the constraints Z w1 Lix = 1,Vi
in IQP. If B collapse into w, every event e; can intersect
only one CC G, — Zszll Z;) = 1; hence, R-IQP is
equivalent to IQP. O



B.5. Proof of lower bound (39) in the main text
Lemma 5.

H, (x;;B) < gleln H.(xj;w) (15)

with equality achieved if B is singleton, i.e., B = {w}.

Proof. Analogous to Lemma 1, we prove this Lemma by
contradiction. Let w* be the optimiser for the RHS of (15).
If

H.(xj;w") < H.(x;;B), (16)
it follows from the definition of pixel intensity (Eq. (1) in
the main text) and its lower bound (Eq. (39) in the main
text) that

1 = f(wis b, w*)|| > [lxj = c(B)]| + [lya(B)II, (A7)

for at leastone 7 =1,..., N.

In words, the longest distance between x; and the disc
D;(B) is less than the distance between x; and the opti-
mal position f(u;,t;,w*). However, f(u;,t;,w*) is al-
ways inside the disc D;(B), and hence Eq. (17) cannot hold.
If B = {w}, then from definition (39) in the main text
H.(x;;B) = He(xj;w).

O

B.6. Proof of lower bound (41) in the main text
Lemma 6.

(B <glel1r§fZHd Xj;w), (18)

with equality achieved if B is singleton, i.e., B = {w}.

Proof. This lemma can be demonstrated by contradiction.
Let w* be the optimiser of the RHS of (18). If

ZHd XJ,

after replacing the plxel intensity and the lower bound pixel
value with they definitions (Eqgs. (3) and (41) in the main
text) in (19), it leads to
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w;, t;; w*) lies in pixel x;)  (20a)

In words, for every warped event f(u;,t;; w*) € D; that
lies in any pixel x; € X of the image plane, the discs D;
must fully lie in the image plane. Since (20a) is a less re-
stricted problem than (20b), (19) cannot hold. If B = {w},
D; = f(u;,t;; w); therefore, the two sides in (18) are
equivalent.

O

C. Additional qualitative results

Figs. 1, 2 and 3 show additional motion compensation
results (Sec. 4.2 in the main text) for subsequences from
boxes, dynamic and poster.
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Figure 1. Qualitative results (motion compensated event images) for boxes.
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Figure 2. Qualitative results (motion compensated event images) for dynamic.
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Figure 3. Qualitative results (motion compensated event images) for poster.



