
Supplementary Materials

Paper ID: 10482

1 Structure of jump-diffusion based classifiers

1.1 Basic structure

Throughout all experiments in this paper, we adapt the network structure from Neural ODE, their code is
available at https://github.com/rtqichen/torchdiffeq/blob/master/examples/odenet_mnist.
py. Our own code will be publicly available after the reviewing process.

Input images

h0 h1

h1 = h0 +
∫ 1

0
f(hτ , τ ;w)dτ +

∫ 1

0
G(hτ , τ)dBτ +

∫ 1

0
J(hτ , τ)� ZNτdNτ

Drift Diffusion Jump

Cross-entropy loss

Figure 1: The network architecture. It can be divided to three segments. The first segment (downsampling
block) is from input images to h0; the second segment (jump-diffusion block) works from h0 to h1; and
the last segment (classification block) process h1 to the final classification loss.

The whole classifier consists of three parts: the downsampling block; the neural jump-diffusion block;
and the classification block. To illustrate the architecture in Fig. 1. The downsampling layer is to prepro-
cess the raw images and downsample it to smaller size. The jump-diffusion block is the most important
part, which can be regarded as the continuous version of ResNet with random layers. Finally the classifica-
tion block is just a fully connected layer combined with softmax nonlinearity. Compared with the original
Neural ODE, we make more flexible choices of different blocks to accommodate different datasets:

• We made two different kinds of downsampling blocks, namely “light” and “heavy”. The light
block has fewer convolutional layers and fewer parameters. For simple dataset such as MNIST (not
shown in this paper), using light downsampling block saves memory and trains faster.

• For the drift function, we also have three choices to encode the current depth t. Recall the encoding
method in Neural ODE is just concatenating t to hidden features. We call this encoding method
as scalar-coding. Another way of coding depth t is similar to the “time encoding” method in
Transformer model [9], specifically we choose the dimension d (typically 64) and calculate

x2i = sin
(t

1002i/d

)
, and x2i+1 = cos

(t

1002i/d

)
. (1)

This is done for all t ∈ [0, 1]. The direct consequence of using such vector-coding is a much
larger hidden dimension, allowing the network to have larger capacity. The last depth encoding

1

https://github.com/rtqichen/torchdiffeq/blob/master/examples/odenet_mnist.py
https://github.com/rtqichen/torchdiffeq/blob/master/examples/odenet_mnist.py

method is null-coding, which does not encode the depth information at all. Doing null-coding
is effectively making the system to be autonomous system.

• For the diffusion function, as mentioned in the main text, we tried four kinds of noises Additive
Gaussian, Multiplicative Gaussian, Dropout Gaussian.

• For the jump function, we only tested Dropout in this paper, implementing random depth net-
work [4] will be as easy as binding all Bernoulli random variables in Dropout.

1.2 Multi-scale flows

The basic architecture shown above has only one jump-diffusion model working on just one resolution of
hidden features h0. In order to improve the performance on real data, we borrow the idea of multi-scale
architecture frommany flow-based generative models (such as RealNVP [2], Glow [5], and FFJORD [3]),
as well as autoregressive models such as PixelCNN [8]). We illustrate this architecture in Fig. 2.

h0

C ×H ×W

h
′
0

C × H
2 × W

2

h
′′
0

C × H
4 × W

4

Down

Down

h1

h
′
1

h
′′
1

Up

Up

SDE 1

SDE 2

SDE 3

Figure 2: Our multi-scale architecture. In this figure we showcase three resolutions {H×W, H2 ×W
2 ,

H
4 ×

W
4 }. The inputs are first downsampled to the desired spatial resolution H

2k
× W

2k
, k = 0, 1, 2. For each

resolution, there is an independent jump-diffusion model (SDE1, SDE2, SDE3) to process the hidden
states, and the final results are then upscaled to the initial resolution H ×W .

2 Omitted proofs

We include the omitted proofs, experiment details and performance analysis here.

3 Omitted Theorems and Proofs

Theorem 3.1. [6] If there exists a non-negative real valued function V (ε, t) defined onRn×R+ that has
continuous partial derivatives

V1(ε, t) :=
∂V (ε, t)

∂ε
, V2(ε, t) :=

∂V (ε, t)

∂t
, V1,1(ε, t) :=

∂2V (ε, t)

∂ε∂ε>

and constants p > 0, c1 > 0, c2 ∈ R, c3 ≥ 0 such that the following inequalities hold:

2

1. c1‖ε‖p ≤ V (ε, t)
2. LV (ε, t) = V2(ε, t) + V1(ε, t)f∆(ε, t) + 1

2Tr[G
>
∆(ε, t)V1,1(ε, t)G∆(ε, t)] ≤ c2V (ε, t)

3. ‖V1(ε, t)G∆(ε, t)‖2 ≥ c3V
2(ε, t)

for all ε 6= 0 and t > 0. Then for all ε0 ∈ Rn,

lim sup
t→∞

1

t
log ‖εt‖ ≤ −

c3 − 2c2

2p
a.s. (2)

In particular, if c3 ≥ 2c2, the solution εt ≡ 0 is almost surely exponentially stable.

We present the proofs of theorems on stability of SDE. The proofs are adapted from [6]. We start
with two crucial lemmas.

Lemma 3.2. If f ,G satisfy Assumption 2, then f∆,G∆ satisfy Assumption 1, 2.

Proof. By Assumption 2 on f ,G, we can obtain that for any ε, ε̃ ∈ Rn, t ≥ 0

‖f∆(ε, t)‖+ ‖G∆(ε, t)‖ ≤ c2‖ε‖ ≤ c2(1 + ‖ε‖),
‖f∆(ε, t)− f∆(ε̃, t)‖+ ‖G∆(ε, t)−G∆(ε̃, t)‖ ≤ c2‖ε− ε̃‖.

This guarantees the uniqueness of the solution of SDE (13) in the main paper.

Lemma 3.3. For SDE (13), whenever ε0 6= 0, Pr{εt 6= 0 for all t ≥ 0} = 1.

Proof. We prove it by contradiction. Let τ = inf{t ≥ 0 : εt = 0}. Then if it is not true, there exists
some ε0 6= 0 such that Pr{τ < ∞} > 0. Therefore, we can find sufficiently large constant T > 0 and
θ > 1 such that Pr(A) := Pr{τ < T and |εt| ≤ θ − 1, ∀ 0 ≤ t ≤ τ} > 0. By Assumption 2 on f and
G, there exists a positive constantKθ such that

‖f∆(ε, t)‖+ ‖G∆(ε, t)‖ ≤ Kθ‖ε‖, for all ‖ε‖ ≤ θ and 0 ≤ t ≤ T. (3)

Let V (ε, t) = ‖ε‖−1. Then, for any 0 ≤ ‖ε‖ ≤ θ and 0 ≤ t ≤ T , we have

LV (ε, t) = −‖ε‖−3ε>f∆(ε, t) +
1

2
{−‖ε‖−3‖G∆(ε, t)‖2 + 3‖ε‖−5‖ε>G∆(ε, t)‖2}

≤ ‖ε‖−2‖f∆(ε, t)‖+ ‖ε‖−3‖G∆(ε, t)‖2

≤ Kθ‖ε‖−1 +K2
θ‖ε‖−1 = Kθ(1 +Kθ)V (ε, t), (4)

where the first inequality comes from Cauchy-Schwartz and the last one comes from (3). For any δ ∈
(0, ‖ε0‖), we define the stopping time τδ := inf{t ≥ 0 : ‖εt‖ /∈ (δ, θ)}. Let νδ = min{τδ, T}. By Itô’s

formula, E
[
e−Kθ(1+Kθ)νδV (ενδ , νδ)

]

= V (ε0, 0) + E
∫ νδ

0
e−Kθ(1+Kθ)s

[
−Kθ(1 +Kθ)V (εs, s) + LV (εs, s)

]
ds ≤ ‖ε0‖−1. (5)

Since τδ ≤ T and ‖ετδ‖ = δ for any ω ∈ A, then (5) implies

E
[
e−Kθ(1+Kθ)T δ−11A

]
= δ−1e−Kθ(1+Kθ)T Pr(A) ≤ ‖ε0‖−1. (6)

Thus, Pr(A) ≤ δ‖ε0‖−1eKθ(1+Kθ)T . Letting δ → 0, we obtain Pr(A) = 0, which leads to a contradic-
tion.

3

Proof of Theorem 3.1

We then prove Theorem 3.1. Clearly, (2) holds for ε0 = 0 since εt ≡ 0. For any ε0 6= 0, we have εt 6= 0
for all t ≥ 0 almost surely by Lemma 3.3. Thus, by applying Itô’s formula and condition (2), we can
show that for t ≥ 0,

log V (εt, t) ≤ log V (ε0, 0) + c2t+M(t)− 1

2

∫ t

0

|V1(εs, s)G∆(εs, s)|2
V 2(εs, s)

ds. (7)

whereM(t) =
∫ t

0
V1(εs,s)G∆(εs,s)

V (εs,s)
dBs is a continuous martingale with initial valueM(0) = 0. By the

exponential martingale inequality, for any arbitrary α ∈ (0, 1) and n = 1, 2, · · · , we have

Pr

{
sup

0≤t≤n

[
M(t)− α

2

∫ t

0

|V1(εs, s)G∆(εs, s)|2
V 2(εs, s)

ds

]
>

2

α
log n

}
≤ 1

n2
. (8)

Applying Borel-Cantelli lemma, we can get that for almost all ω ∈ Ω, there exists an integer n0 = n0(ω)
such that if n ≥ n0,

M(t) ≤ 2

α
log n+

α

2

∫ t

0

|V1(εs, s)G∆(εs, s)|2
V 2(εs, s)

ds, ∀ 0 ≤ t ≤ n. (9)

Combining (7), (9) and condition (3), we can obtain that

log V (εt, t) ≤ log V (ε0, 0)− 1

2
[(1− α)c3 − 2c2]t+

2

α
log n. (10)

for all 0 ≤ t ≤ n and n ≥ n0 almost surely. Therefore, for almost all ω ∈ Ω, if n − 1 ≤ t ≤ n and
n ≥ n0, we have

1

t
log V (εt, t) ≤ −

1

2
[(1− α)c3 − 2c2] +

log V (ε0, 0) + 2
α log n

n− 1
(11)

which consequently implies

lim sup
t→∞

1

t
log V (εt, t) ≤ −

1

2
[(1− α)c3 − 2c2]) a.s. (12)

With condition (1) and arbitrary choice of α ∈ (0, 1), we can obtain (2).

Proof of Corollary 4.0.1

We apply Theorem 3.1 to establish the theories on stability of SDE (16). Note that f(ht, t;w) is L-
Lipschitz continuous w.r.t ht andG(ht, t;v) = σht,m = 1. Then, SDE (16) has a unique solution, with
f∆ andG∆ satisfying Assumption 1, 2,

‖f∆(εt, t)‖+ ‖G∆(εt, t)‖ ≤ max{L, σ}‖εt‖ ≤ max{L, σ}(1 + ‖εt‖),
‖f∆(εt, t)− f∆(ε̃t, t)‖+ ‖G∆(εt, t)−G∆(ε̃t, t)‖ ≤ max{L, σ}‖εt − ε̃t‖.

To apply Theorem 3.1, let V (ε, t) = ‖ε‖2. Then,

LV (ε, t) = 2ε>f∆(ε, t) + σ2‖ε‖2 ≤ (2L+ σ2)‖ε‖2 = (2L+ σ2)V (ε, t),

‖V1(ε, t)G∆(ε, t)‖2 = 4σ2V (ε, t)2.

Let c1 = 1, p = 2, c2 = 2L+ σ2, c3 = 4σ2. By Theorem 3.1, we finished the proof.

4

4 Experiment settings

We have experimented several numerical solver for stochastic differential equations, and finally decided
to adopt the most straightforward Euler scheme. Although higher order solvers would also work, we find
low order solver is fast and precise enough. We follow the idea in Neural ODE [1] and divide the whole
classifier into three parts, the first part is to increase the number of channels to a suitable value (which
can also be regarded as feature extraction for neural SDE); the following part the the ODE/SDE solver,
note that the shape of intermediate states are not changed throughout. The last layer is for classification.

The overview of our model architecture is described in Figure 1. Here we list some key hyper-
parameters for each model in Table 1. We can see that the architectures are roughly the same, except
that for Tiny-ImageNet, our model is significantly larger due to that fact that this data is significantly
harder to train on.

Dataset First block SDE block Last block

MNIST
[
Conv2d(1, 64, 3, 1)

]
× 1




GroupNorm(32, 64)
Conv2d(64, 64, 3, 1, 1)

ReLU


× 3




GroupNorm(32, 64)
ReLU
GAP

Linear(64, 10)


× 1

CIFAR-10




Conv2d(3, 64, 3, 1, 1)
GroupNorm(32, 64)

ReLU
Conv2d(64, 128, 4, 2, 1)
GroupNorm(32, 128)

ReLU
Conv2d(128, 256, 4, 2, 1)




× 1




GroupNorm(32, 64)
Conv2d(64, 64, 3, 1, 1)

ReLU


× 3




GroupNorm(32, 64)
ReLU
GAP

Linear(64, 10)


× 1

Tiny-ImageNet




Conv2d(3, 64, 3, 1, 1)
GroupNorm(32, 64)

ReLU
Conv2d(64, 128, 4, 2, 1)
GroupNorm(32, 128)

ReLU
Conv2d(128, 256, 4, 2, 1)




× 1




GroupNorm(32, 256)
Conv2d(256, 256, 3, 1, 1)

ReLU


× 3




GroupNorm(32, 256)
ReLU
GAP

Linear(256, 200)


× 1

Table 1: Model hyper-parameters. We follow the parameter convention in PyTorch [7]. “GAP” means
global average pooling [10].

5 Some empirical analysis

We provide some extra experiments to examine the discretization error due to Euler scheme. Different
from traditional weak and strong convergence analysis of SDE solver, here we only need to care about
the error in mean values, i.e. ‖EXt − EX̄t‖, since in our case only the results will be first be averaged
before linear classifier and the accuracy of classification should not be affected as long as the mean values
are precise enough. To verify that, we run our neural SDE model under different discretization step,
specifically ∆t = {1.0×10−1, 5.0×10−2, 1.0×10−2, 5.0×10−3, 1.0×10−3, 5.0×10−4, 1.0×10−4}
and because we cannot solve the equation in closed form, we choose the result by ∆t = 1.0 × 10−5

as the ground truth. For each step size, we solve the SDE 1000 times independently and average the
resulting image embedding vectors. The discritization error is measured by the relative error in the sense
of Euclidean norm: ‖a − b‖2/‖b‖2. The results are shown in Figure 3. We can observe that although
finer step size leads to smaller discretization error, even a coarse step ∆t = 0.1 with relative error ∼2−4

can hardly change the prediction results.

5

101 102 103 104

Network depth t

2−9

2−8

2−7

2−6

2−5

2−4

D
isc

rit
iz

at
io

n
er

ro
r

Figure 3: Discretization error under different step size in SDE solver.

101 102 103 104

Network depth t

10−2

10−1

100

101

R
un

ni
ng

tim
e

(s
ec

.)

SDE
ODE
ODE-adjoint

Figure 4: Running time comparison (forward propagation) between Neural SDE, Neural ODE and Neural
ODE - adjoint. The curves are largely overlapped, meaning all methods have running time proportional
to network depth.

6 Running time comparison: Neural SDE, NeuralODE, andNeuralODE-
adjoint

See Figure 4.

References
[1] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential

equations. In Advances in Neural Information Processing Systems, pages 6572–6583, 2018. 5
[2] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv preprint

arXiv:1605.08803, 2016. 2
[3] Will Grathwohl, Ricky TQ Chen, Jesse Betterncourt, Ilya Sutskever, and David Duvenaud. Ffjord: Free-form

continuous dynamics for scalable reversible generative models. arXiv preprint arXiv:1810.01367, 2018. 2
[4] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with stochastic

depth. In European conference on computer vision, pages 646–661. Springer, 2016. 2
[5] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In Advances

in Neural Information Processing Systems, pages 10215–10224, 2018. 2
[6] Xuerong Mao. Stochastic differential equations and applications. Elsevier, 2007. 2, 3

6

[7] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017. 5

[8] Scott Reed, Aäron van den Oord, Nal Kalchbrenner, Sergio Gómez Colmenarejo, Ziyu Wang, Yutian Chen,
Dan Belov, and Nando de Freitas. Parallel multiscale autoregressive density estimation. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70, pages 2912–2921. JMLR. org, 2017. 2

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pages
5998–6008, 2017. 1

[10] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep features for
discriminative localization. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 2921–2929, 2016. 5

7

