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1. Overview
In this supplementary material, we present additional results to complement the main manuscript. First, we describe the

detailed training steps in Section 2. Second, we show the detailed procedure for our synthetic reflection sequences generation
process in Section 4. Third, we illustrate the network architecture of the initial flow decomposition network in Section 3.
Finally, we analyze the effect of initial flow decomposition, background/reflection layer reconstruction, TV loss, and visualize
temporal consistency of our video reflection removal results in Section 5. We also provide comprehensive visual results in
our project website.

2. Training Algorithm
We describe the training steps of our two-stage training strategy and unsupervised online optimization in Algorithm 1 and

Algorithm 2. We implement our model with TensorFlow. We use the Adam optimizer to update the network parameters
and set the learning rate to 0.0001 and batch size to 2. Each training sample contains five consecutive frames. The hyper-
parameter settings are the same for both the training on synthetic data and the online optimization on real data. We provide
the detailed training algorithms and network architectures in the supplementary material.

Algorithm 1 Two-stage training strategy

Input: Quadruplets frames {Qt}
Output: Parameters of the initial flow decomposition network ΘF , the background reconstruction network ΘB , and the

reflection reconstruction network ΘR

1: while iterations iter < 400k do
2: Randomly Sample a minibatch of {B̂t} and {R̂t} from {Qt} to synthesize {It}.
3: Feed {B̂t} and {R̂t} to PWC-Net to generate ground-truth dense flow fields for background and reflection layer.
4: if iter < 200k then
5: Update ΘF with loss function Ldec in Equation 6.
6: else
7: Fix the weights of ΘF .
8: Update ΘB and ΘR from level 0 to level 4 in an end-to-end fashion with loss function L in Equation 9.

3. Network Architecture of Initial Flow Decomposition Network
The overall architecture of the initial flow decomposition network is shown in Figure 1. Our initial flow decomposition

network consists of two sub-modules: 1) a feature extractor, and 2) a layer flow estimator. Finally, we tile the global motion
vectors into two uniform flow fields V 0

B,k→j and V 0
R,k→j , for the background and reflection layers, respectively.
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Algorithm 2 Online optimization

Input: Parameters of the pre-trained initial flow decomposition network ΘF , the background reconstruction network ΘB ,
and the reflection reconstruction network ΘR

Output: Parameters of the online fine-tuned background reconstruction network ΘB , and the reflection reconstruction net-
work ΘR

1: Fix the weights of ΘF .
2: while iterations iter < 1k do
3: Randomly crop the testing data to form a training minibatch.
4: Update ΘB and ΘR with unsupervised loss function Lonline in Equation 12.
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Figure 1: Architecture of initial flow decomposition network. Given a keyframe Ik and a reference frame Ij , the feature
extractor first generates two features ck and cj . Then, we construct a cost volume with the two features and use six convolu-
tional layers, a global average pooling layer, and a fully connected layer to generate two motion vectors. We then tile these
two vectors into constant flow fields V 0

B,k→j and V 0
R,k→j for the background and reflection layers, respectively.



4. Dataset Generation
We illustrate our synthetic reflection/obstruction sequences generation process and data augmentation in Figure 2 and 3.

We also provide examples of the training pairs generated from our pipeline in Figure 4 and 5.
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Figure 2: Reflection sequence generation. Given two randomly picked sequences, we first apply random homography
transformations independently on every frame. Then, we apply random walk cropping to simulate camera movements.
Afterward, we use the realistic reflection image synthesis model in [1, 5] to generate a sequence with reflections.
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Figure 3: Obstruction sequence generation. We fist randomly pick a clean sequence and a sequence with fence or obstruc-
tion. Similar to the reflection sequence generation, we apply random homography and random cropping to two sequences as
well as the ground-truth alpha maps of the fences or obstruction. Then, we use an alpha blending to generate a new sequence
with fences or obstruction.



Fr
am

e
0

Fr
am

e
0

Fr
am

e
1

Fr
am

e
1

Fr
am

e
2

Fr
am

e
2

Fr
am

e
3

Fr
am

e
3

Fr
am

e
4

Fr
am

e
4

I B̂ R̂ I B̂ R̂

Figure 4: Training pairs generated by our synthetic reflection data generation pipeline.
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Figure 5: Training pairs generated by our synthetic obstruction data generation pipeline.



5. Additional Analysis
5.1. Initial Flow Decomposition

Figure 6 shows that estimating dense flow fields at the coarsest level may result in noisy predictions and lead to inconsis-
tent layer separation. In contrast, our uniform flow prediction serves as a good initial prediction to facilitate the following
background reconstruction and flow refinement steps.
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Figure 6: Initialization with global translation vectors is better than dense flow field. Predicting dense flow field with
spatial-variant CNN may results in separated background and foreground in the same image. Replacing with global transla-
tion vectors leads to consistent layer predictions.



5.2. Background/Reflection Layer Reconstruction

In Figure 7, we show that the model using temporal mean or median filter for image reconstruction does not perform
well and often generates ghosting artifacts. The proposed image reconstruction network, on the other hand, is capable of
compensating alignment errors caused by the flow estimation in the previous level and fuses the flow-warped images into
artifact-free images.
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(a) Input (two rep. frames) (b) Mean (c) Median (d) Ours

Figure 7: Image reconstruction network can compensate warping errors.



5.3. TV loss

Figure 8 shows that online optimization without TV loss results in noisy predictions. In contrast, TV loss helps the network
generating smooth predictions by regularizing sparse image gradient priors.
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(a) Input (two rep. frames) (b) Without TV loss (c) With TV loss

Figure 8: Online optimization with TV loss is better.



5.4. Temporal Coherency

The proposed method takes 5 neighboring frames as input and generates the separation results for the reference frame.
Although predicting each reference frame independently, our method still generates temporally coherent results on the en-
tire video. Here, we compare our method with four video reflection removal approaches [3, 4, 2]. Both the methods of
Xue et al. [3] and Yang et al. [4] take multiple frames as input and generates the middle frame, similar to our model.
Xue et al.+ [3] is an extension of [3] which uses the moving window strategy in [4] to improve the temporal consistency. Both
Xue et al.++ [3] and Yang et al.++ [4] adopt a temporal average filtering to reduce the temporal flickering. Nandoriya et al. [2]
use a spatio-temporal optimization to process the entire video sequence jointly.

We evaluate the temporal consistency of each method on a controlled synthetic video sequence provided by [2], which
blends two videos through an alpha blending. The two layers have different global movements. In addition, there is a third
layer on the background which contains a flying bird to simulate local moving objects. Figure 9 shows that our method
generates video results with better spatial separation and temporal coherency in terms of NCC and SSIM. In Figure 10, we
show separation results on real input sequences, where the proposed method not only separates the background and reflection
layers well but also preserves temporal coherency.
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Figure 9: Evaluation different reflection removal methods on a controlled synthetic sequence provided by [2]. Our
method generates the best temporal coherency and layer separation.
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Figure 10: Our method generate better layer separation with temporal coherency (yellow slice). ’+’: applies the original
method using moving window strategy as mentioned in [4]. ’++’: uses a moving temporal average filtering to reduce
flickering based on ’+’.
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