
Neural Contours: Learning to Draw Lines from 3D Shapes
Supplementary Material

Figure 1: Results of our “Neural Contours” method on various test 3D models.

1. Additional Results
Figure 1 shows a gallery of our results for various 3D

models from our test set (please zoom-in to see more de-
tails). We also refer the reader to more results available on
our project page:
http://github.com/DifanLiu/NeuralContours

2. Image translation branch implementation
We provide here more implementation details for our image

translation branch (see also Section 3.2 of our main text). We

also refer readers to our publicly available implementation on our
project page.

Multi-scale shaded maps. We smooth mesh normals by dif-
fusing the vertex normal field in one-ring neighborhoods of the
mesh through a Gaussian distribution. Each vertex normal is ex-
pressed as a weighted average of neighboring vertex normals. The
weights are set according to Gaussian functions on vertex dis-
tances. The standard deviation σ of the Gaussians control the de-
gree of influence of neighboring vertex normals: when σ is large,

http://github.com/DifanLiu/NeuralContours

input shape NC-image NC-geometry Neural Contours

Figure 2: Additional comparison of our two branch outputs
(image translation branch output “NC-Image” vs geometry
branch output “NC-Geometry” vs Neural Contours).

the effect of smoothing is larger. The map O1 is generated based
on the initial normal field, while O2,O3,O4,O5,O6 are created
using smoothing based on σ = {1.0, 2.0, 3.0, 4.0, 5.0} respec-
tively.

Architecture details. Our image translation branch uses the
architecture shown in Table 1. All convolutional layers are fol-
lowed by batch normalization [2] and a ReLU nonlinearity except
the last convolutional layer. The last convolutional layer is fol-
lowed by a sigmoid activation function. The branch contains 9
identical residual blocks, where each residual block contains two
3×3 convolutional layers with the same number of filters for both
layers.

Layer Activation size
Input 768 × 768 × 7

Conv(7x7, 7→64, stride=1) 768 × 768 × 64
Conv(3x3, 64→128, stride=2) 384 × 384 × 128
Conv(3x3, 128→256, stride=2) 192 × 192 × 256
Conv(3x3, 256→512, stride=2) 96 × 96 × 512

Conv(3x3, 512→1024, stride=2) 48 × 48 × 1024
9 Residual blocks 48 × 48 × 1024

Conv(3x3, 1024→512, stride=1/2) 96 × 96 × 512
Conv(3x3, 512→256, stride=1/2) 192 × 192 × 256
Conv(3x3, 256→128, stride=1/2) 384 × 384 × 128
Conv(3x3, 128→64, stride=1/2) 768 × 768 × 64

Conv(7x7, 64→1, stride=1) 768 × 768 × 1

Table 1: Architecture of the Image Translation Branch.

3. Neural Ranking Module implementation
We provide here implementation details for our Neural Rank-

ing Module (see also Section 3.3 of our main text).

Architecture details. Our Neural Ranking Module uses the
architecture shown in Table 2. It follows the ResNet-34 architec-
ture [1]. We add one more residual block with 1024 filters after
the original four residual blocks. After average pooling, we get a
1024-dimensional feature vector. We remove the softmax layer of
ResNet-34 and use a fully connected layer to output the “plausi-
bility” value.

Layer Activation size
Input 768 × 768 × 3

Conv(7x7, 8→64, stride=2) 384 × 384 × 64
Max-pool(3x3, stride=2) 192 × 192 × 64

ResBlock(64→64, stride=1, blocks=3) 192 × 192 × 64
ResBlock(64→128, stride=2, blocks=4) 96 × 96 × 128

ResBlock(128→256, stride=2, blocks=6) 48 × 48 × 256
ResBlock(256→512, stride=2, blocks=3) 24 × 24 × 512

ResBlock(512→1024, stride=2, blocks=3) 12 × 12 × 1024
Average-pool(12x12) 1024

FC(1024→1) 1

Table 2: Architecture of the Neural Ranking Module.

4. Additional experiments
Parameter set t regression. We experimented with directly
predicting the parameter set t with a network, but this did not pro-
duce good results. The network includes a mesh encoder which
is a graph neural network based on NeuroSkinning [3] and an
image encoder based on ResNet-34. The mesh encoder takes a
triangular mesh as input and outputs a 1024-dimensional feature
vector. The image encoder takes (E,O) as input and outputs a
1024-dimensional feature vector. These two feature vectors are
concatenated and processed by a 3−layer MLP which outputs the
parameter set t. We used cross-entropy loss between IG(t) and
Ibest to train the network. We note that combining the mesh and
image encoder worked the best. We name this variant Geometry-
Regressor. Table 3 reports the resulting performance compared to
our method. The results of this approach are significantly worse.

Parameter set t exhaustive search. We also tried to tune
parameters of ARs, RVs, SCs using an exhaustive grid search to
minimize average Chamfer distance in the training set. The grid
was based on regular sampling 100 values of the parameters in
the interval [0, 1]. This exhaustive search did not produce good
results. Table 3 reports the performance of these variants AR-grid,
RV-grid, SC-grid, all-grid.

Method IoU CD F1 P R
AR-grid 56.6 11.21 59.1 54.2 64.9
RV-grid 56.0 11.73 58.3 53.6 63.9
SC-grid 51.0 12.57 53.2 57.5 49.5
all-grid 54.6 11.61 57.4 47.9 71.7

Geometry-Regressor 52.9 11.05 54.2 48.2 62.0
NCs 62.8 9.54 65.4 65.5 65.4

Table 3: Comparisons with competing methods using draw-
ings from Cole et al.’s dataset and our newly collected
dataset. IoU, F1, P, R are reported in percentages, CD is
pixel distance.

Image translation vs geometric branch output example
Figure 2 shows an additional example of comparison between the
geometry branch and the image translation branch outputs; com-
pare the areas around the antlers, and the shoulder to see the con-
tributions of each branch.

As also shown in Figure 6 of our main paper, the geometry
model makes explicit use of surface information in 3D, such as
surface curvature, to identify important curves, which appear sub-
tle or vanish in 2D rendered projections. In contrast, the image
model identifies curves that depend on view-based shading infor-
mation that is not readily available in the 3D geometry.

5. Training set collection
We created Amazon MTurk questionnaires to collect our train-

ing dataset. Each questionnaire had 35 questions. 5 of the ques-
tions were randomly chosen from a pool of 15 sentinels. Each
sentinel question showed eight line drawings along with render-
ings from a reference 3D model. One line drawing was created by
an artist for the reference shape, and seven line drawings were cre-
ated for different 3D models. The line drawings were presented to
the participants in a random order. Choosing one of the seven line
drawings (or the option “none of these line drawings are good”)
resulted in failing the sentinel. If a worker failed in one of these
5 sentinels, then he/she was labeled as “unreliable” and the rest of
his/her responses were ignored. A total of 4396 participants took
part in this user study to collect the training data. Among 4396
participants, 657 users (15%) were labeled as “unreliable”. Each
participant was allowed to perform the questionnaire only once.

6. Perceptual Evaluation
We conducted an Amazon Mechanical Turk perceptual evalu-

ation where we showed participants (a) a rendered shape from a
viewpoint of interest along with two more views based on shifted
camera azimuth by 30 degrees, (b) a pair of line drawings placed in
a randomized left/right position: one line drawing was picked from
our method, while the other came from pix2pixHD, NC-geometry,
NC-image, or AR-rtsc. We asked participants to select the draw-
ing that best conveyed the shown 3D shape. Participants could
pick one of four options: left drawing, right drawing, “none of
the drawings conveyed the shape well”, or “both” drawings con-
veyed the shape equally well”. The study included the 12 shapes
(2 viewpoints each) from both Cole et al.’s and our new collected
test dataset (44 shapes, two viewpoints each). Thus, there were
total 112 test cases, each involving the above-mentioned 4 com-
parisons of techniques (448 total comparisons).

Each questionnaire was released via the MTurk platform. It
contained 15 unique questions, each asking for one comparison.
Then these 15 questions were repeated in the questionnaire in a
random order. In these repeated questions, the order of compared
line drawings was flipped. If a worker gave more than 7 inconsis-
tent answers for the repeated questions, then he/she was marked as
“unreliable”. Each participant was allowed to perform the ques-
tionnaire only once. A total of 225 participants took part in the
study. Among 225 participants, 38 workers were marked as “un-
reliable”. For each of the 448 comparisons, we gathered consistent
answers from 3 different users. The results are shown in Figure 7
of the main text.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proc. CVPR,
2016. 2

[2] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-
celerating deep network training by reducing internal covari-
ate shift. In Proc. ICML, 2015. 2

[3] Lijuan Liu, Youyi Zheng, Di Tang, Yi Yuan, Changjie Fan,
and Kun Zhou. Neuroskinning: Automatic skin binding for
production characters with deep graph networks. ACM Trans-
actions on Graphics (TOG), 38(4), 2019. 2

