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1. Inference runtime analysis

Components HPF SCOT Time
(1) Feature extraction X X tCNN
(2) Correlation map (Eq. 4) X X O(D ∗ hsws ∗ htwt)
(3) CAM (Eq. 7) X O(dL ∗ hsws + dL ∗ htwt)
(4) Algorithm 1 X O(tmax ∗ hsws ∗ htwt)

Table 1: Complexity analysis for HPF [2] and the pro-
posed SCOT. D denotes the feature dimension, dL de-
notes the number of channels in the last convolutional layer,
hs, ws, ht, wt denote the height and width of source and tar-
get images, and tmax is the maximum number of iterations.

In this section, we show the complexity comparison be-
tween HPF [2] and the proposed SCOT. The four compo-
nents of our method and their runtime costs are shown in
Table 1. Since dL �D×max(hsws, htwt) and tmax � D,
the extra costs introduced in components (3) and (4) are
marginal. We conclude that the runtime cost of our method
is only slightly higher than HPF.

We compared the runtime speed of the ResNet-101 back-
bone 1 on the test split of SPair-71k. The average inference
time is 66ms (HPF) vs. 86ms (Ours) using an NVIDIA
2080Ti GPU.

2. Keypoints matching results

In this section, we show results of transferring keypoints
in the source image to the corresponding points in the target
image. As shown in Figure 2, the predicted keypoints are
quite near to the ground truth. The proposed algorithm is
robust under large intra-class variations, background clutter,
view-point changes, and partial occlusion.

1Input image pairs are resized to max(H,W ) = 300. The selected
optimal layers are “2,22,24,25,27,28,29”.

Figure 2: Keypoints matching results on SPair-71k. “×”
denotes the ground truth target keypoints.
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(a) Source Image (b) Target Image (c) Ours (d) HPF [2] (e) A2Net [1] (f) WeakAlign [3] (g) NC-Net [4]

Figure 1: Qualitative results on SPari-71k. The source images are warped to align with target images using correspondences.
For HPF [2], NC-net [4], and our method, we first use the source keypoints and the predicted target keypoitns to estimate
the thin-plate spline (TPS) parameters, then apply TPS transformation on the source image. For A2Net [2] and WeakAlign
[3], they are global alignment methods that directly predict the global transformation parameters from the CNN models. We
show image pairs with large intra-class, scale, and view-point changes. Our method performs better in complex conditions
due to our global matching and background suppressing strategies.

3. More qualitative results

In this section, we show more qualitative results in Fig-
ure 1. We warp the source images to align with the corre-
sponding target images. For HPF [2], NC-net [4], and our
method, we first use the source keypoints and the predicted
target keypoints to estimate the thin-plate spline (TPS) pa-
rameters, then apply TPS transformation on the source im-
age. For A2Net [2] and WeakAlign [3], they are global

alignment methods that directly predict the global trans-
formation parameters from the CNN models. We show
the results of image pairs with large intra-class, scale, and
view-point changes. Our method performs better in com-
plex conditions due to our global matching and background
suppressing strategies.
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