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This document is the supplementary material for our
submitted CVPR 2020 paper. First, we prove more visual
examples of the synthesized images of our propsoed CyC-
PDAM. Next, we add some statistical analysis for the ex-
periment results. We then compare our CyC-PDAM with
the method without domain adaptation, which further in-
dicates the effectiveness of our proposed method. Finally,
more implementation details are updated.

1. Visualization Examples of the Synthesized
Images

Although histopathology images contain more complex
structures than fluorescence microscopy images, our pro-
posed CyC-PDAM is able to narrow the domain gap be-
tween the two modalities with pixel-level domain adap-
tation by synthesizing target-like histopathology images,
from the microscopy images. Fig. 1 contains several syn-
thesized samples for the Kumar and TNBC datasets.

2. Statistical Analysis

As mentioned in our paper, we conduct one-tailed-paired
t-test for statistically significance analysis in Sec. 4.3.1 and
Sec. 4.3.2. Table 1 contains the p-values between each un-
supervised comparison method and our proposed method
on the Kumar and TNBC datasets. All the p-values are un-
der 0.05 and most of them are under 0.01, which indicates
that our improvement compared to other methods is statis-
tically significant. Table 3 contains the p-values for the ab-
lation experiment. Under three metrics, all the p-values are

under 0.01, which demonstrate that after adding each pro-
posed module, the performance of the model is improved
by a large margin.

3. Improvement Compared with the Method
without Domain Adaptation

To further demonstrate the effectiveness of our proposed
UDA architecture, we test the improvement of the UDA
compared with the method without domain adaptation, on
both Kumar and TNBC datasets. As shown in Table 2, w/o
DA means directly training the fully supervised Mask R-
CNN model with the fluorescence microscopy images in the
BBBC039V1 dataset, and testing it on the testing set of the
histopathology image dataset. With the pixel-level adapta-
tion, image-level and instance-level feature adaptation, the
performances under three metrics of the baseline CyCADA
are improved 11% to 22%. Furthermore, with our proposed
nuclei inpainting mechanism, panoptic-level feature adap-
tation, and task re-weighting mechanism on CyC-PDAM,
the performances are further lifted 6% to 12%. Fig. 2 and
Fig. 3 show the qualitative comparison results.

4. More Implementation Details

In this section, we introduce more implementation de-
tails of our proposed model. Our overall paradigm con-
tains two parts. For the CycleGAN in the data generator,
the weights of the model are initialized with normal dis-
tribution initialization. For the initialization of the end-to-
end PDAM, the weights of the ResNet101 backbone are
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BBBC039→ Kumar (p-value) BBBC039→ TNBC (p-value)
Methods AJI Pixel-F1 Object-F1 AJI Pixel-F1 Object-F1

CyCADA [4] 3.51× 10−6 5.55× 10−4 1.88× 10−6 5.45× 10−5 2.50× 10−3 2.27× 10−4

Chen et al [2] 1.03× 10−7 1.44× 10−7 6.64× 10−5 4.95× 10−5 3.72× 10−5 1.03× 10−5

SIFA [1] 3.94× 10−7 6.50× 10−5 8.74× 10−3 1.03× 10−4 1.91× 10−3 4.86× 10−4

DDMRL [6] 5.67× 10−5 9.36× 10−6 2.23× 10−5 7.73× 10−4 9.33× 10−3 4.80× 10−4

Hou et al [5] 4.92× 10−3 5.98× 10−3 1.83× 10−3 4.08× 10−3 2.92× 10−2 2.53× 10−3

Table 1. The p-value for the comparison methods on the Kumar and TNBC datasets.

BBBC039→ Kumar BBBC039→ TNBC
Methods AJI Pixel-F1 Object-F1 AJI Pixel-F1 Object-F1
w/o DA 0.3170± 0.1388 0.5076± 0.1781 0.5107± 0.1459 0.3379± 0.0684 0.5400± 0.0874 0.5796± 0.0731

UDA baseline [4] 0.4447± 0.1069 0.7220± 0.0802 0.6567± 0.0837 0.4721± 0.0906 0.7048± 0.0946 0.6866± 0.0637
Proposed 0.5610± 0.0718 0.7882± 0.0533 0.7483± 0.0525 0.5672± 0.0646 0.7593± 0.0566 0.7478± 0.0417

Table 2. In comparison with the method without domain adaptation, and the UDA baseline (CyCADA).

AJI Pixel-F1 Object-F1
w/o NI 1.69× 10−3 1.08× 10−3 7.58× 10−4

w/o TR 1.05× 10−4 2.42× 10−2 4.91× 10−5

w/o SEM 1.00× 10−3 1.38× 10−3 1.78× 10−4

Table 3. p-values for the ablation study on BBBC039V1 to Ku-
mar experiment. NI, TR, and SEM represent the nuclei inpainting
mechanism, task re-weighting mechanism, and semantic branch,
respectively.

pretrained on the ImageNet classification task, while the
weights for other layers are initialized with “Kaiming” ini-
tialization [3].

The CycleGAN of our model is from the official Cy-
cleGAN repository1, with the generators of 9 residual con-
nected CNN blocks, and the discriminators of 3 CNN lay-
ers. All the Mask R-CNN models mentioned in the ex-
periments have the same implementation, with the official
repository [7]. More specifically, for the BBBc039V1 to
Kumar experiment, the number of ROIs after RPN is set to
500 and 8000, during training and testing, respectively, be-
cause the testing image size (1000×1000) is about 16 times
of the training size (256 × 256). For the BBBc039V1 to
TNBC experiment, the numbers of ROIs after RPN during
training and testing are set to 300 and 1200, respectively, as
the size of the 512 × 512 testing images is 4 times of the
256× 256 training ones.

5. Discussions on the Nuclei Scale Variation

Nuclei scale variation is very common and challeng-
ing in digital pathology and our CyC-PDAM success-
fully solves it in the unsupervised nuclei segmentation for
histopathology images. We have discussed the scales of the
nuclei predictions in the ablation study section. In addi-
tion, we notice in Fig. 5 of the paper, there also remain
nuclei predictions in irregular sizes for all the compari-

1https://github.com/junyanz/
pytorch-CycleGAN-and-pix2pix

son methods. With the panoptic-level feature adaptation,
the model learns the domain-invariant features for each ob-
ject including its texture, scale, and location. The task re-
weighting mechanism induces the model to pay more at-
tention to the domain-invariant features, which prevents the
model from learning the source-biased scale features and
makes the model suitable for the various object scales in the
target domain. By outperforming fully supervised methods
when tested on the unseen organ images with unknown nu-
clei scales, our method is further validated to be effective for
nuclei segmentation at various scales in the histopathology
images.

6. More Analysis on the Ablation Study Results
We provide some intuitive explanation for the abla-

tion study in our paper in Sec. 4.3.2. NI successfully
removes the auxiliary nuclei in the synthesized images
and the model without NI tends to treat some fore-
ground objects as the background during training. By ignor-
ing some foreground objects, the model learns inaccurate
domain-invariant semantic-level information, which hurts
the feature-level adaptation. In addition, the false-negative
predictions are harmful to the segmentation and detection
task learning. Therefore NI has a similar importance to TR
and SEM, without involving the learning process.

7. The Importance and the Novelty of Our
Work

Our CyC-PDAM has significant differences from the ex-
isting methods. Firstly, this is the first work on the UDA
instance segmentation, which unifies the UDA detection
and segmentation and has not been investigated by previous
work. Second, our nuclei inpainting mechanism is origi-
nally designed to remove the auxiliary generated nuclei and
preserve the true nuclei in the synthesized images based on
the labels. However, none of the previous work has dis-
cussed or solved the auxiliary nuclei issue in the synthesized
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Figure 1. Visualization examples for the synthesized histopathol-
ogy images. (a) and (c) fluorescence microscopy images; (b) syn-
thesized histopathology images for the Kumar dataset; (d) synthe-
sized histopathology images for the TNBC dataset.

histopathology images. Third, we are the first to combine
the panoptic segmentation idea with UDA for instance seg-
mentation. Panoptic segmentation is currently only used in
fully supervised tasks and we take the first step to use this
idea for UDA tasks. Fourth, our task re-weighting mecha-
nism is originally proposed to prevent the model from learn-
ing the source-biased domain-specific features. This is an
important problem in UDA study, and, to the best of our
knowledge, we are the first to solve it by resetting the impor-
tance of each task loss. Furthermore, our extensive experi-
ments demonstrate that our methods outperform the SOTA
UDA methods significantly, which indicates the novelty and
importance of our proposed paradigm in the UDA study.
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Figure 2. Visualization examples for the comparison experiment with the two baseline on the Kumar dataset.



Figure 3. Visualization examples for the comparison experiment with the two baseline on the TNBC dataset.


