
Generating Accurate Pseudo-labels in Semi-Supervised Learning and Avoiding
Overconfident Predictions via Hermite Polynomial Activations

Supplementary Material

Table of Contents
1. Proofs for the theorems. .(2)

2. Computational Benefits on AWS p2.xlarge(4)

3. Higher number of active units with
Hermite Polynomials .(4)

4. Early Riser Property Preserved: ResNets (4)

5. Early Riser Property Preserved: DenseNets (4)

6. SSL Results on CIFAR10-1K (5)

7. Noise injection experiments on Hermites (5)

8. Experiments on Shallow Nets (5)

9. Cloud Services Details .(6)

1

1. Proof of Theorems

Assume that the data is mean normalized (mean 0 and
identity covariance matrix). In order to prove our main
result, we first prove a generic pertubation bound in the
following lemma. We analyze hermite polynomials on
a simpler setting, a one-hidden-layer network, to get an
intuitive feeling of our argument. Consider a one-hidden-
layer network with an input layer, a hidden layer, and an
output layer, each with multiple units. Let x denote the
input vector, and fk(x) and fl(x) to be two output units.
Denote wj to be the weight vector between input and the
jth hidden unit, and alk to be the weight connecting lth

hidden unit to the kth output unit. The network can be
visualized as in Figure 1.

Figure 1: One Hidden Layer Network

In the lemma 1, we bound the distance between two out-
put units fk(x) and fl(x). This gives us an upperbound on
how any two output units differ as a function of the norm of
the (input) data, ‖x‖.

Lemma 1. Consider the output unit of the network,
fk(x) =

∑
j akj

∑d
i=0 cihi(w

T
j x), where c′is are the Her-

mite coefficients and d is the maximum degree of the hermite
polynomial considered. Then,

|fl(x)− fk(x)| ≤ Cdαβ

Here, C is a constant that depends on the coefficients of the
Hermite polynomials and

α = max
lk

∑
j

|alj − akj | ; β = max(‖w‖dp‖x‖dq , ‖w‖p‖x‖q),

such that 1/p+ 1/q = 1.

Proof.

fl(x) =
∑
j

alj(
∑
i

cihi(w
T
j x)) and

fk(x) =
∑
j

akj(
∑
i

cihi(w
T
j x))

|fl(x)− fk(x)|

= |
∑
j

(alj − akj)(
∑
i

cihi(w
T
j x))| (1)

≤ |
∑
j

|(alj − akj)||(
∑
i

cihi(w
T
j x))| (2)

hi is the normalized hermite polynomial (hi = Hi√
i!

).

|hi(z)| = |Hi(z)√
i!
| ≤ C1

|z|i√
i!

, here, C1 is a function of the
coefficients of a given hermite polynomial.

Let’s bound |(
∑

i cihi(w
T
j x))|,

|(
∑
i

cihi(w
T
j x))|

≤ ‖ci‖p‖hi‖q where
1

p
+

1

q
= 1

≤
[∑

i

cpi

]1/p[∑
i

hqi

]1/q
≤ d1/pC2

[
d∑

i=0

C1|wT
j x|iq√
i!
q

]1/q

∀i, ci ≤ C2

≤ d1/pC2

[d∑
i=0

C1|wT
j x|iq

]1/q
Replace C1, C2 with C

≤ d1/pCd1/q max(|wT
j x|, |wT

j x|d)
≤ Cdmax(|wT

j x|, |wT
j x|d)

Using, J = argmax‖wj‖ and 1/p+ 1/q = 1

≤ Cdmax(‖wJ‖1/p‖x‖1/q, ‖wJ‖d1/p‖x‖
d
1/q)

Substituting the above result back into Equation 2, we get,

|fl(x)− fk(x)|

≤ |
∑
j

|(alj − akj)||(
∑
i

cihi(w
T
j x))|

≤ Cdmax(‖wJ‖‖x‖, ‖wJ‖d‖x‖d)max
kl

∑
j

|(alj − akj)|

= Cdαβ

Here, α = maxkl
∑

j |(alj − akj)| and β =

max(‖wJ‖‖x‖, ‖wJ‖d‖x‖d)

The above lemma can be seen as a perturbation bound
since we can simply interpret fk = fl + gl for some other
function, (hopefully with nicer properties) gl. Our main the-
orem is simply an application of the above lemma to a spe-
cial case. This allows us to quantify the noise resilience
of hermite polynomials. In particular, we show that if the

2

test data is far from the train data, then hermite polynomi-
als trained deep networks give low confidence predictions.
This property allows us to detect outliers during inference,
especially in mission critical applications since it allows a
human in a loop system [5].

Theorem 2. Let fk(x) =
∑

j akj
∑∞

i=0 cihi(w
T
j x), be a

one-hidden-layer network with the sum of infinite series of
hermite polynomials as an activation function. Here, k =
1, 2, ...,K are the different classes. Define wJ = minwT

j x.
Let the data x be mean normalized. If ε > 0, the Hermite
coefficients ci = (−1)i and

‖x‖ ≥ 1

‖wJ‖
log

α

log (1 +Kε)

then, we have that the predictions are approximately (uni-
formly) random. That is,

1

K
− ε ≤ efk(x)∑K

l=1 e
fl(x)

≤ 1

K
+ ε ∀ k ∈ {1, 2...,K}

Proof. Observe that,

efk(x)∑K
l=1 e

fl(x)
=

1∑K
l=1 e

fl(x)−fl(x)

Using the fact that |x| ≥ x and −|x| ≤ x, we observe,

1∑K
l=1 e

|fl(x)−fk(x)|
≤ 1∑K

l=1 e
fl(x)−fk(x)

≤ 1∑K
l=1 e

−|fl(x)−fk(x)|
(3)

Let’s bound |fl(x)− fk(x)|,

|fl(x)− fk(x)|

= |
∑
j

akj(
∑
i

cihi(w
T
j x))−

∑
j

alj(
∑
i

cihi(w
T
j x))|

= |
∑
j

(akj − alj)(
∑
i

cihi(w
T
j x))|

= |
∑
j

(akj − alj)(
∑
i

ci
(−1)n

hi(w
T
j x)(−1)n)|

From the properties of hermite polynomials,

ext−t
2/2 =

∞∑
i=0

hi(x)t
n

e−x−1/2 =

∞∑
i=0

hi(x)(−1)n ,when t = −1 (4)

Choose ci = (−1)i, then

max
j

∑
i

(ci)
ihi(w

T
j x)(−1)n = max

j
e−w

T
j x−1/2

≤ e−minj wT
j x

Thus,

|fl(x)− fk(x)|

= |
∑
j

(akj − alj)(
∑
i

hi(w
T
j x)(−1)n)|

≤ e−minj wT
j x|

∑
j

(akj − alj)|

≤ e−minj wT
j xα where α = max

kl
|
∑
j

(akj − alj)|

Let e−minj wT
j xα ≤ log(1 +Kε), then,

=⇒ 1∑K
l=1 e

|fl(x)−fk(x)|
≤ 1∑K

l=1 e
fl(x)−fk(x)

≤ 1∑K
l=1 e

−|fl(x)−fk(x)|

=⇒ 1

K(1 +Kε)
≤ 1∑K

l=1 e
fl(x)−fk(x)

≤ 1 +Kε

K

=⇒ 1

K
− ε ≤ 1∑K

l=1 e
fl(x)−fk(x)

≤ 1

K
+ ε

Let J = argminj(w
T
j x). The condition,

e−w
T
J xα ≤ log(1 +Kε),

=⇒ wT
J x ≥ log

α

log (1 +Kε)

=⇒ ‖wJ‖‖x‖ ≥ wT
J x ≥ log

α

log (1 +Kε)

=⇒ ‖x‖ ≥ 1

‖wJ‖
log

α

log (1 +Kε)

We interpret the above theorem in the following way:
whenever ‖xtest‖ is large, the infinity norm of the func-
tion/prediction is approximately 1/K where K is the num-
ber of classes. This means that the predictions are the same
as that of random chance – low confidence. The only caveat
of the above theorem is that it requires the all of (infinite)
hermite polynomials for the result to hold. However, all
of our experiments indicate that such a property holds true
empirically, as well.

3

2. Computational Benefits on AWS p2.xlarge
In the paper, we have seen the cost benefits of using Her-

mite Polynomials on AWS p3.16xlarge instance. In this sec-
tion, we will examine the performance on AWS p2.xlarge
instance as indicated in Table 1. Clearly, as AWS p2.xlarge
costs less, the benefits achieved when using hermite poly-
nomials is more significant in the compute time.

Time per Total Time
Epoch Time Cost Savings
(sec) (hours) ($) (hours)

SVHN Hermite 666.8 2.22 2.0 2.6ReLU 435.3 4.84 4.35

CIFAR-10 Hermite 454.2 3.53 3.18 ≥ 8.5ReLU 320.7 ≥ 12 ≥ 10.8

SmallNORB Hermite 164.8 1.74 1.57 ≥ 1.33ReLU 81.8 ≥ 3.07 ≥ 2.76

MNIST Hermite 345.4 4.41 3.97 -2ReLU 180 2.4 2.16

Table 1: Hermite-SaaS on AWSp2.xlarge instance. Hermite-SaaS
saves compute time when compared to ReLU-SaaS

3. Higher number of active units with Hermite
Polynomials

There is consensus that ReLUs suffer from the “dying
ReLU” problem. Even ignoring pathological cases, it is not
uncommon to find that as much as 40% of the activations
could “die”. A direct consequence of this behavior is that
the dead neurons will stop responding to variations in er-
ror/input. This makes ReLUs not very suitable for Recur-
rent Network based architectures such as LSTMs [2]. On
the other hand [3] shows that having a certain number of
active units, the number determined based on the network
architecture is a necessary condition for successful training.
We demonstrate here that we meet the necessary condition
with a large margin.

Experiment We investigated the number of active units
present in a Hermite Network and a ReLU network at the
start and the end of training using preactResNet18 model.
We determined that the percentage of active units in Her-
mites are 100%/99.9% (EPOCH 0/ EPOCH 200) whereas
in ReLU are 51%/45% (EPOCH 0 / EPOCH 200). We also
plot the number of active units at the end of training across
the layers in Figure 2. It can be seen in Figure 2 that Her-
mites have twice the number of Active Units than ReLU.

4. Early Riser Property Preserved: ResNets
Setup We used CIFAR10 data in all the experiments in

here with random crop and random horizontal flip for data
augmentation schemes. With a batch size of 128 for train-
ing and SGD as an optimizer, we trained ResNets for 200

Figure 2: Hermite networks have more active units. This figure dis-
plays the number of active units present in different layers of ResNet18
network at the end of training. It can be seen that Hermite Nets have close
to 100% active units while in ReLU nets half the number of neurons are
dead at the end of training.

epochs. We began with some initial learning rate and then
reduce it by 10 at 82nd and 123rd epoch – this is standard
practice. We repeated every experiment 4 times in order to
control the sources of variance.

Experiment The experimental results for ResNet18 and
ResNet50 models can be found in Figure 3, Figure 3a and
Figure 3b respectively. The results for ResNet150 can be
found in Table 2. We observe that the early riser property is
preserved accross different learning rates for these ResNet
models. There is a small increase in the number of param-
eters proportional to the number of layers in the network.

Dataset Number of Best Epochs to reach
CIFAR10 Trainable Parameters Test Accuracy 90% Test Accuracy

Hermite 58,145,574 95.48% 30

ReLU 58,144,842 94.5% 80

Table 2: Hermite Polynomials in ResNet152. We observe small in-
crease in the number of parameters. Test accuracy for the hermite model
converges in less than half the number of epochs.

5. Early Riser Property Preserved: DenseNets

Setup All the experiments here were conducted on CI-
FAR10 dataset with random crop and random horizontal flip
schemes for data augmentation. We used the basic block
architecture [1] with 40 layers, a growth rate of 12, and a
compression rate of 1.0 in the transition stage.

Experiment Figure 4 shows the experimental results of
using Hermite Polynomials in a DenseNet. We observe that
the early riser property is preserved only in the training loss
and the training accuracy curves.

4

(a) ResNet18 (b) ResNet50

Figure 3: Early riser property preserved in ResNets (a) ResNet18 and (b) ResNet50. We observe that a test accuracy of 90% is achieved in approxi-
mately half the number of epochs in Hermite-ResNets over ReLU-ResNets on CIFAR10 dataset over different learning rates. The closest that Hermite gets
to ReLU is the case when both their learning rates are 0.01 in ResNet50. In this case, we observe that 90% testset accuracy achieved in 20 epochs for
Hermite-ResNet50 and 30 epochs for ReLU-ResNet50.

Figure 4: Early Riser Property in DenseNets. We observe that the
training loss and the training accuracy converge at a faster rate when using
Hermite Polynomials in DenseNets.

6. SSL Results on CIFAR10-1K

In the paper, we report the cost benefits on CIFAR10
dataset with 4000 labelled items. Here, we report bene-
fits on Hermite Polynomials on CIFAR10 dataset with 1000
labelled item, another popular experimental setting for CI-
FAR10 dataset. We find that Hermite-SaaS works equally
well for CIFAR10-1K. We achieve a max pseudolabel accu-
racy of 77.4% compared to 75.6% in ReLU-SaaS. Hermite-
SaaS saves cost > $280 on AWS p3.16xlarge and compute
time by 13+ hours on AWS p2.xlarge, compared to ReLU-
SaaS when run with (20/135) inner/outer epoch config.

7. Noise injection experiments on Hermites

Setup We repeat the SaaS experiments by injecting 10%
and 30% label noise to CIFAR10 dataset. We utilize the
method proposed by [4], let’s call it Tanaka et al., as an

optional post-processing step after obtaining pseudo-labels
via SaaS. Basically, Tanaka et al. performs a “correction”
to minimize the influence of noise once the pseudolabels
have been estimated. The authors in [4] propose an alter-
nating optimization algorithm where the weights of the net-
work and the labels of the data are updated alternatively. We
conduct experiments with 10% and 30% label noise levels
on the CIFAR10 dataset. After estimating the pseudolabels
and/or using the scheme in [4], we trained a model in a su-
pervised manner using Resnet18.

Experiment Our results summarized in Table 3 show
that Hermite-SaaS based models obtain a similar or higher
test set accuracy. We also observe that our model converges
faster compared to a ReLU-SaaS model. Our experimental
results also indicate that post processing techniques (such
as [4]) may not always be usefuls to improve the general-
ization performance of models.

8. Experiments on Shallow Nets
Setup We used a 3-layer network where the hidden lay-

ers have 256 nodes each. We used CIFAR10 dataset for this
experiment with normalized pixel values and no other data
augmentation schemes. The architecture we worked with
is thus [3072, 256, 256, 10]. We ran two experiments, one
with ReLU activation function and the other with Hermite
activations (d = 5 polynomials). The loss function was
cross-entropy, SGD was the optimization algorithm and we
added batch normalization. Learning rate was chosen as

5

10% Noise ABest NBest

SaaS Hermite 85 224
ReLU 84 328

SaaS +
Tanaka et al.

Hermite 85 244
ReLU 84 284

30% Noise ABest NBest

SaaS Hermite ∼80 95
ReLU ∼80 ≥600

SaaS +
Tanaka et al.

Hermite ∼80 61
ReLU ∼80 299

Table 3: SaaS experiments on Noisy Labelled dataset. We report the
best accuracy (ABest), and number of epochs (NBest) to reach this accuracy.
Tanaka et al. stands for noisy label processing method proposed in [4].

0.1 and the batch size as 128. Figure 5 shows the loss func-
tion and the training accuracy curves that we obtained. It
was observed that, when ReLU is just replaced with Her-
mite activations while maintaining everything else the same,
the loss function for hermites converges at a faster rate than
ReLU atleast for the earlier epochs.

Figure 5: Experiments on Shallow Nets. The training loss and training
accuracy reduce at a faster rate with Hermite-Polynomials

9. Cloud Services Details
We utilize AWS EC2 On-Demand instances in our re-

search. Specifically, we use p3.16xlarge instance which
costs $24.48 per hour and p2.xlarge instance which costs
$0.9 per hour.

References
[1] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional networks.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4700–4708, 2017. 4

[2] Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple
way to initialize recurrent networks of rectified linear units.
arXiv preprint arXiv:1504.00941, 2015. 4

[3] Yeonjong Shin and George Em Karniadakis. Trainability and
data-dependent initialization of over-parameterized relu neu-
ral networks. arXiv preprint arXiv:1907.09696, 2019. 4

[4] Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and Kiy-
oharu Aizawa. Joint optimization framework for learning
with noisy labels. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5552–5560,
2018. 5, 6

[5] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas
Funkhouser, and Jianxiong Xiao. Lsun: Construction of a
large-scale image dataset using deep learning with humans in
the loop. arXiv preprint arXiv:1506.03365, 2015. 3

6

