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A. Target models
The backbones and datasets of pretrained weights for tar-

get models are shown in Table 1.

Models Backbone Pretrained Dataset
Yolov3[11][10] DarkNet53 COCO
RetineNet[4][2] ResNet50 COCO
SSD[5][8] MobileNet COCO
Faster R-CNN[12][9] ResNet50 COCO
Mask R-CNN[3][9] ResNet50 COCO
DeepLabv3[1][9] ResNet101 sub COCO in VOC labels
FCN [6][9] ResNet101 sub COCO in VOC labels

Table 1: Backbone and pretrained dataset for target models.

B. Experiments on ImageNet
We have performed adversarial attacks on randomly cho-

sen 5000 correctly classified images from the ImageNet
validation set. The accuracies for detection and segmen-
tation are shown in Table 3 and Table 4, respectively. Since
there are no ground truth annotations and masks for the test
images, the performance metrics are selected as the rela-
tive mAP/mIoU for detection and semantic segmentation
respectively. In other words, the predictions from benign
samples are regarded as the ground truth and predictions
from adversarial examples are regarded as inference results.

Our proposed method (DR) achieves the best results in
17 out of 21 sets of experiments (81.0%) by degrading the
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performance of the target model by a larger margin. For
detection, our proposed attack reduces the mAP, on aver-
age, to 7.41 over all the experiments. It creates 3.8 more
drop in mAP compared to the best of the baselines (TI-DIM:
11.2 mAP). For semantic segmentation, our proposed attack
achieves 16.93 mIoU on average over all the experiments.
It achieves 4.76 more drop in mIoU compared to the best of
the baselines (DIM: 21.69 mIoU).

Avg. Res. Det. Seg.
mAP mIoU

COCO&VOC/ImageNet
PGD 26.1 / 19.1 33.6 / 28.8
MI-FGSM 22.8 / 15.6 30.6 / 25.2
DIM 18.6 / 11.5 25.9 / 21.8
TI-DIM 16.7 / 11.2 26.4 / 21.7
DR (Ours) 12.8 / 7.4 20.0 / 16.9

Table 2: Average results for detection and segmentation us-
ing COCO, VOC and ImageNet validation images.

C. Average Results
We have compared the proposed DR attack with the

state-of-the-art adversarial techniques to demonstrate the
transferability of our method on public object detection and
semantic segmentation models. We have used the validation
sets of ImageNet, VOC2012 and COCO for testing object
detection and semantic segmentation tasks. The average re-
sults can be seen in Table 2,

For COCO and VOC datasets, our proposed method
(DR) achieves the best results by degrading the perfor-
mance of the target model by a larger margin. For detection,
our proposed drops the mAP to 12.8 on average over all the
experiments. It creates 3.9 more drop in mAP compared to
the best of the baselines (TI-DIM: 16.7 mAP). For semantic



Yolov3
DrkNet

RetinaNet
ResNet50

SSD
MobileNet

Faster-RCNN
ResNet50

Mask-RCNN
ResNet50

mAP mAP mAP mAP mAP

VGG16

PGD(α=1,N=20) 31.6 19.1 19.5 6.4 7.1
PGD(α=4,N=100) 18.7 7.0 7.7 2.8 3.3
MI-FGSM(α=1,N=20) 25.9 13.4 15.2 4.7 5.0
MI-FGSM(α=4,N=100) 16.4 5.0 6.6 1.8 2.2
DIM(α=1,N=20) 23.4 11.3 11.5 3.7 4.5
DIM(α=4,N=100) 17.2 5.8 6.3 2.2 2.7
TI-DIM(α=1.6,N=20) 21.5 10.2 11.6 3.5 4.0
TI-DIM(α=4,N=100) 16.3 7.8 8.6 2.3 2.7
DR(α=4,N=100)(ours) 17.0 3.6 4.1 1.2 1.5

InceptionV3

PGD(α=1,N=20) 51.3 36.6 33.9 25.9 25.1
PGD(α=4,N=100) 33.3 16.4 16.2 14.1 14.7
MI-FGSM(α=1,N=20) 44.6 27.4 27.5 19.8 20.1
MI-FGSM(α=4,N=100) 30.3 14.1 15.3 11.9 12.5
DIM(α=1,N=20) 30.6 15.2 16.4 11.0 11.7
DIM(α=4,N=100) 25.3 10.2 10.6 6.9 8.2
TI-DIM(α=1.6,N=20) 30.6 15.4 16.1 9.4 10.3
TI-DIM(α=4,N=100) 23.7 11.2 12.2 6.8 7.0
DR(α=4,N=100)(ours) 21.1 8.6 9.4 4.5 5.3

Resnet152

PGD(α=1,N=20) 40.8 27.6 27.0 10.4 10.8
PGD(α=4,N=100) 27.2 13.4 13.0 5.0 6.1
MI-FGSM(α=1,N=20) 33.9 20.3 21.2 7.6 8.0
MI-FGSM(α=4,N=100) 24.6 11.4 11.8 3.9 4.7
DIM(α=1,N=20) 26.9 13.2 13.0 4.4 5.3
DIM(α=4,N=100) 22.2 9.3 8.7 2.9 3.7
TI-DIM(α=1.6,N=20) 25.3 13.0 13.3 4.2 5.0
TI-DIM(α=4,N=100) 19.5 9.4 9.8 2.7 2.9
DR(α=4,N=100)(ours) 21.0 6.2 4.8 1.3 1.6

Table 3: Detection results for ImageNet.

DeepLabv3
ResNet101

FCN
ResNet101

mIoU mIoU

VGG16

PGD(α=1,N=20) 30.3 24.6
PGD(α=4,N=100) 17.5 15.1
MI-FGSM(α=1,N=20) 25.4 20.8
MI-FGSM(α=4,N=100) 15.5 13.9
DIM(α=1,N=20) 24.7 19.0
DIM(α=4,N=100) 17.1 14.5
TI-DIM(α=1.6,N=20) 23.8 20.0
TI-DIM(α=4,N=100) 18.3 16.5
DR(α=4,N=100)(ours) 16.5 12.4

InceptionV3

PGD(α=1,N=20) 47.3 37.5
PGD(α=4,N=100) 31.0 24.4
MI-FGSM(α=1,N=20) 40.5 31.8
MI-FGSM(α=4,N=100) 28.3 22.8
DIM(α=1,N=20) 30.4 24.4
DIM(α=4,N=100) 25.0 20.0
TI-DIM(α=1.6,N=20) 28.1 24.4
TI-DIM(α=4,N=100) 22.1 20.6
DR(α=4,N=100)(ours) 19.7 17.2

Resnet152

PGD(α=1,N=20) 39.5 31.1
PGD(α=4,N=100) 26.4 20.9
MI-FGSM(α=1,N=20) 33.5 26.3
MI-FGSM(α=4,N=100) 24.5 19.3
DIM(α=1,N=20) 26.8 21.0
DIM(α=4,N=100) 21.7 17.3
TI-DIM(α=1.6,N=20) 26.2 21.9
TI-DIM(α=4,N=100) 20.1 18.3
DR(α=4,N=100)(ours) 20.5 15.3

Table 4: Segmentation Results for ImageNet.



(a) Clean Data (b) Benign (c) DR (ours) (d) PGD (e) MI-FGSM (f) DIM (g) TI-DIM

Figure 1: Samples of Detection and Segmentation Results

segmentation, our proposed attack causes the mIoU to drop
to 20.0 on average over all the experiments. It achieves 5.9
more drop in mIoU compared to the best of the baselines
(DIM: 25.9 mIoU).

The diagnostic of average results for ImageNet can be
seen in B.

D. Visualization
D.1. Sample Images

Figure 1 shows the visualization samples for the pro-
posed method and baselines attacks. Examples of detec-
tion and segmentation results for clean images, results for
benign images, proposed DR images, PGD images, MI-
FGSM images, DIM images and TI-DIM images are shown
in each column (starting from left), respectively. First two
rows are the detection results, and the last two rows are the
segmentation results. We can see that the proposed DR at-
tack is able to effectively perform vanishing attack to both
segmentation and detection tasks. It is also noted that the
proposed DR attack is more successful and effective, com-
pared to the baselines, when attacking and degrading the
performance for smaller objects.

D.2. Difference Images

We implement VGG16 conv3.3 as the source model. The
difference between original images and adversarial images

are shown in Figure 2.

D.3. Perturbation Comparison

In Fig. 3, we present a sample of original image as
well as AEs generated by baselines and our proposed DR
method. As can be seen from the figure, the AE gener-
ated by our proposed method has the same perceptibly with
which generated by the baseline methods.

E. Attacks Using Partial Feature Map
In this section, we show the experimental results for ap-

plying different dispersion reduction strategies. Pervasive
standard deviation reduction, high value standard deviation
reduction and masked standard deviation reduction are per-
formed in the experiment. Pervasive standard deviation re-
duction is referred as classical std. reduction. For high value
standard deviation reduction, in the feature output map, the
elements that have highest 20% output values are gathered
to perform std. reduction. For masked standard deviation
reduction, a half height half width bounding box is imple-
mented to locate at the area with highest output values. El-
ements within the bounding box are gathered to perform
std. reduction. Then, the bounding box location are back
traced to input image. The out-of-bbox perturbation are ig-
nored while generating AEs. The retailed results are shown
in Tab. 5 and a set of sample images are shown in Fig. 4. It



(a) Ori. (b) DR (c) Diff. (d) Diff.x15.94

Figure 2: Samples of Difference Between Original Images and Adversarial Images. VGG16 conv3.3 is chosen as the source model. The original
images (a), adversarial images (b), difference images (c) and x15.94 amplified difference images (d) are shown in the figure by columns.

can be seen that the generated AEs that generated by modi-
fied std. reductions are more similar to the original image.

F. Attacking by Linf = 16 and Linf = 8

In this section, we evaluate performance for baselines
and proposed DR method by AEs that are generated un-
der Linf = 8 restriction. COCO2017 are chosen as testing
dataset and all attacking methods use stepsize = 1 and
numofsteps = 20. We choose YOLOv3 and Deeplabv3

as target models to represent object detection and semantic
segmentation. VGG16, InceptionV3 and Resnet152 are set
as surrogates. The results are shown in Tab. 7. A set of
sample images that compare Linf = 16, Linf = 8 and the
original image are shown in Fig. 5.

G. Ensemble results on COCO2017
We compare the performance of proposed DR attack

using single source models and ensemble model as surro-



(a) Ori. (b) DR(Ours) (c) TIDIM

(d) DIM (e) PGD (f) MIFGSM

Figure 3: Compare Perturbations Generated by Baselines and Proposed Method. The original images (a), AE generated by proposed DR (b),
TI-DIM (c), DIM (d), PGD (e) and MI-FGSM (f) are shown in the figure, respectively. We can see that the AE generated by our proposed method has the
same perceptibly with which generated by the baseline methods.

COCO2017 DR yolov3 Retina FstrRCNN MaskRCNN Deeplabv3 FCN
mAP/mIoU step size=1 Drk Res50 Res50 Res50 Res101 Res101n steps=20

VGG16
pervasive 21.19 5.92 2.91 3.25 20.78 14.24
selective 44.58 24.61 18.13 19.05 52.68 38.49
mask 21.64 6.43 3.17 4.71 21.29 14.90

Incv3
pervasive 24.81 10.40 10.46 11.60 25.77 18.73
selective 31.49 13.80 16.40 17.67 26.71 19.56
mask 29.22 12.54 15.51 15.74 29.34 20.94

Res152
pervasive 24.30 8.29 3.13 4.12 26.66 18.60
selective 43.65 23.43 17.57 18.23 51.62 37.51
mask 27.51 9.25 3.60 6.16 28.43 20.94

Table 5: Pervasive, selective and partial attack. For high value standard deviation reduction, in the feature output map, the elements that have highest
20% output values are gathered to perform std. reduction. For masked standard deviation reduction, a half height half width bounding box is implemented
to locate at the area with highest output values. Elements within the bounding box are gathered to perform std. reduction. Then, the bounding box location
are back traced to input image.

gate. As shown in Tab. 6, ensemble attacking slightly out-
performs single attacking. Ensemble attack achieves best
performance in 3 over 6 sets of experiments and slightly
out performs in other 3 experiments. Due to the trade-off

of slightly performance improvement and significant com-
putational expanse increment, we do not recommend using
ensemble attacking as baseline for the proposed method.



Figure 4: Pervasive, selective and partial attack. Pervasive standard deviation reduction, high value standard deviation reduction and masked standard
deviation reduction are shown in the figure. It can be seen that the generated AEs that generated by modified std. reductions are more similar to the original
image.

COCO yolov3 Retina FstrRCNN MaskRCNN Deeplabv3 FCN
2017 Drk Res50 Res50 Res50 Res101 Res101mAP/mIoU

VGG16 19.82 5.29 2.46 3.17 17.16 12.92
Incv3 24.18 8.52 8.30 9.79 23.23 17.05

Res152 22.72 6.83 2.25 3.03 22.66 16.35
ensemble 19.24 5.36 2.53 3.06 17.06 12.69

Table 6: Results for comparing AEs generated by single source models and ensemble model. Ensemble attack achieves best performance in 3 over 6
sets of experiments and slightly out performs in other 3 experiments.



(a) Linf = 8 (b) Linf = 16 (c) Original

Figure 5: Perturbed Images Generated by Different Metrics. Without contrasting to the original image, the perturbation generated by Linf = 8 are
imperceptible by humans [7].

COCO2017 Eps8 yolov3 Deeplabv3
mAP/mIoU Drk Res101

VGG16

MIFGSM 34.66 38.69
PGD 37.33 42.04
DIM 36.77 41.21
TIDIM 37.29 43.51
DR(Ours) 31.45 34.41

Incv3

MIFGSM 45.20 46.90
PGD 40.08 49.66
DIM 42.84 47.13
TIDIM 44.09 48.79
DR(Ours) 41.13 42.08

Res152

MIFGSM 39.51 43.96
PGD 47.48 46.33
DIM 37.26 42.50
TIDIM 38.98 45.34
DR(Ours) 33.58 36.52

Table 7: Detection and Segmentation results for AEs generated by
Linf = 8 metric on COCO2017. We can see that our proposed DR at-
tack achieves better attacking performance comparing to SOTA baselines.
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