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In this supplementary material, we provide further in-

formation about the generation of our dataset, the detailed

network architecture, and additional experimental results.

1. Dataset

We select an approximate 4km×6km area centered in the

City of London as the region of interest. Then the ground-

truth depth and semantic images are generated from stereo

matching [1, 5, 4] and supervised classification [7], respec-

tively. We downloaded the corresponding street-view im-

ages via the Google Street View Static API1. Originally,

we obtained 30k street-view panoramas in total with lon-

gitude, latitude, and orientation information. Fig. 1 shows

the coverage of the dataset, where the red lines indicate the

trajectories of the downloaded Google street-view panora-

mas. As introduced in Sec. 3.4.1 in the main paper, there are

some misalignments between satellite images and street-

view panoramas due to the error in the GPS information. To

select the well aligned image pairs, we calculate the over-

lapping ratios of sky pixels on the geo-transformed street-

view semantic image and the real street-view semantic im-

age. The image pairs with overlapping ratio higher than 0.9

are considered as well aligned (e.g. the first seven rows in

Fig. 5), while the rest are considered as not-aligned (the last

four rows in Fig. 5). Therefore, we eventually obtain ap-

proximate 2k well-aligned satellite-street-view image pairs

for the training phase.

2. Network Architecture

Tab. 1 provides a detailed description of the input and

output tensor sizes of each sub-network in our pipeline. We

use the same UNet structure for both UNetsat and UNetstr,

of which the network parameters are further detailed in

Tab. 2. The BicycleGAN [9] we used consists of a UNet

generator, two 3-layer discriminators and a ResNet encoder.

∗These authors contributed equally to this work.
†Corresponding authors.
1https://developers.google.com/maps/documentation/streetview/intro

We use the default network settings from BicycleGAN’s of-

ficial implementation2 but changed the dimension of the la-

tent vector to 32 and changed the number of filters in the

first convolutional layer of all networks to 96. The exter-

nal encoder has exactly the same structure as the encoder in

BicycleGAN [9].

3. Additional Experimental Results

Additional qualitative comparison. Fig. 6 shows addi-

tional results of our method on the test dataset in compari-

son to Regmi et al. [6], and Pix2Pix [8, 2]. As can be seen,

our proposed network performs significantly better on the

semantic image generation than the other baseline. Espe-

cially regarding the correctness, it can be observed that the

generated semantic image of [6] is only a rough guess of

the street-view layout (e.g. row 2, 5, and 7) from the satel-

lite image without any geometric guidance. While for our

method, the street-view layout is almost the same as the

ground truth, because the geometric layout of the scene is

well preserved from the satellite to the street-view via our

geo-transformation layer. Furthermore, the estimated posi-

tion of the sidewalk in the result of [6] randomly appears

in front of buildings. In contrast, our network can learn

the relationship between sidewalk and building very well

since the geometric information between the two classes

can be better learned with the transformed street-view depth

image. The improvements of our semantic images even-

tually also lead to significantly better RGB outputs of our

method compared to the baselines. The results of [6] typi-

cally show less artifacts and more plausible street-view im-

ages than Pix2Pix. Nevertheless, the generated images from

both baseline methods have many more blurred texture de-

tails and only some parts of the scene reflect the actual ge-

ometric scene configuration corresponding to the satellite

image.

Pinhole-camera Test. To testify the flexibility of our net-

work, we also present results for perspective images on the

testing dataset which have been generated with the same

2https://github.com/junyanz/BicycleGAN



Figure 1. Area coverage of our dataset. Originally the satellite images cover an approximately 4km×6km area centered in the City of

London, while the amount of street-view panoramas is around 30k in total.

network without any retraining by replacing the previous

panoramic camera model. To this end, we generated images

for a virtual pinhole camera using the same optical camera

center as the panorama image with the height, width, focal

length equal to 256, 256, 64 pixels, and a principle direc-

tion heading to the center of the panorama. Looking at the

results presented in Fig. 2, it is apparent that our network

generalizes well and produces pleasing street-view images

also for the pinhole camera setting. Please note that the

baselines Regmi et al. [6] and Pix2Pix [8, 2] do not gener-

alize and require retraining in order to change the camera

model.

Discussion on the failure cases. We also provide some

failure examples in the last three rows of Fig. 6. We no-

tice that these results do not have a similar skyline layout

compared to the ground truth street-view panoramas. This



Table 1. Sub-network overview. We detail the input and output dimensions for all major parts in our pipeline.

Model/Layer IO Description Tensor Dimension

UNetsat
Input Satellite RGB Hsat ×Wsat × 3

Output Satellite Depth + Semantics Hsat ×Wsat × (1 + 3)

UNetstr
Input

Transformed Street-view Depth + Semantics
Hstr ×Wstr × (1 + 3 + 3)

and Resized Satellite RGB

Output Street-view Semantics Hstr ×Wstr × 3

BicycleGAN
Input

Street-view Semantics + Depth
Hstr ×Wstr × (3 +Nenc)

and Encoded Latent Vector

Output Street-view RGB Hstr ×Wstr × 3

Geo-transformation
Input Satellite Depth + Semantics Hsat ×Wsat × (1 + 3)

Output Transformed Street-view Depth + Semantics Hstr ×Wstr × (1 + 3)

Inv. Geo-transformation
Input Street-view RGB + Depth Hstr ×Wstr × (3 + 1)

Output Inv. Transformed Satellite RGB Hsat ×Wsat × 3

External Encoder
Input Satellite RGB Hsat ×Wsat × 3

Output Encoded Latent Vector Nenc

Table 2. Detailed UNet network architecture used for the two networks: UNet{sat,str}.

Part Layer Parameters Output Dimension

Encoder

Conv1+BN+LeakyReLU 4×4, 64, 2 H/2×W/2× 64
Conv2+BN+LeakyReLU 4×4, 128, 2 H/4×W/4× 128
Conv3+BN+LeakyReLU 4×4, 256, 2 H/8×W/8× 256
Conv4+BN+LeakyReLU 4×4, 512, 2 H/16×W/16× 512
Conv5+BN+LeakyReLU 4×4, 512, 2 H/32×W/32× 512
Conv6+BN+LeakyReLU 4×4, 512, 2 H/64×W/64× 512
Conv7+BN+LeakyReLU 4×4, 512, 2 H/128×W/128× 512
Conv8+BN+LeakyReLU 4×4, 512, 2 H/256×W/256× 512

Decoder

Decov1+BN+ReLU 4×4, 512, 2 H/128×W/128× 512
Concat1 cat(Conv7,Decov1) H/128×W/128× 1024

Decov2+BN+ReLU 4×4, 512, 2 H/64×W/64× 512
Concat2 cat(Conv6,Decov2) H/64×W/64× 1024

Decov3+BN+ReLU 4×4, 512, 2 H/32×W/32× 512
Concat3 cat(Conv5,Decov3) H/32×W/32× 1024

Decov4+BN+ReLU 4×4, 512, 2 H/16×W/16× 512
Concat4 cat(Conv4,Decov4) H/16×W/16× 1024

Decov5+BN+ReLU 4×4, 256, 2 H/8×W/8× 256
Concat5 cat(Conv3,Decov5) H/8×W/8× 512

Decov6+BN+ReLU 4×4, 128, 2 H/4×W/4× 128
Concat6 cat(Conv2,Decov6) H/4×W/4× 256

Decov7+BN+ReLU 4×4, 64, 2 H/2×W/2× 64
Concat7 cat(Conv1,Decov7) H/2×W/2× 128

Decov8+BN+ReLU 4×4, {4,3}, 2 H ×W × 3
Tanh - H ×W × {4, 3}

is mainly due to the error in the satellite depth estimation

and also the misalignment of the satellite image and ground

truth images. Moreover, we also noticed that there are very

small artifacts in our generated panoramas. Actually, this

kind of artifacts are a known problem of GANs which use

transposed convolution (deconvolution) in the decoder. Ac-

cording to [3], this problem could be addressed by replacing

the transposed convolution layer to a combination of bilin-

ear upsamplling and a general convolution.

Qualitative comparison between with and without inv.

geo-transformation layer. In Fig. 3, we provide two qual-

itative examples generated by the models with and with-

out the loss respectively. As can be seen, the model with

the inverted geo-transformation layer can yield more visi-

ble white lane lines while the roads generated by the model

without the loss have a relatively uniform gray with sparse

lane lines which is not very obvious. We believe that the

layer can help to utilize the evidence provided by satellite

images and can better preserve street patterns. Since we do

not have ground truth lane marks, we did not include the

quantitative results.
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Figure 2. Image generation results with a pinhole camera model. Given the satellite RGB input, our method can also predict perspective

semantic and depth images, and also generate geometrically correct perspective pinhole-camera images with good texture.

(a) w/o inverted geo-transf. (b) with inverted geo-transf.

Figure 3. Qualitative comparison between with and without in-

verted geo-transformation layer.

Robustness to content and photometric changes. Strong

photometric changes can influence the performance of the

estimated geometry, but typically still lead to plausible

panoramas. Satellites with optical cameras are often in a

sun-synchronous orbit and visit the same place in approxi-

mately the same time of the day. As a result, there are lit-

tle photometric changes on satellite images captured within

close dates (e.g. within a few weeks). The examples 1 and 2

in Fig. 4 show a test of our method on two satellite images

with similar contents, leading to very little differences in

both texture and layout of the resulting panorama. In con-

trast, seasonal changes significantly affect sun angles, illu-

mination and structural changes (e.g. cast shadows, snow)

which potentially impact the predicted depth. The exam-

ples 3 and 4 in Fig. 4 show satellite images which were

Example 1 Example 2

Example 3 Example 4

Figure 4. Qualitative comparison regarding to satellite content and

photometric changes.

taken 9 months apart. For image regions with significant ap-

pearance differences our trained model generates different

depth models and the corresponding predicted street-view

panorama will no longer preserve the correct geometry of

the scene’s layout. Fortunately, the texture of the predicted

street-view panorama is still of good quality, which means

that our satellite stage network domains the geometry while

the street-view stage controls the texture of the final pre-

dicted street-view panorama.
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Figure 5. Samples of our training dataset. Left to right: (a) is the overlapping ratio (the higher the better aligned) of the image, (b) the

satellite image, (c) the ground-truth satellite semantic segmentation, (d) the ground-truth satellite depth, (e) the transformed depth of (d),

(f) the ground-truth street-view semantic, and (g) the ground-truth street-view image, respectively.
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Figure 6. Additional qualitative comparisons. We present additional test results of our method, in comparison to Regmi et al. [6], and

Pix2Pix [2]. The last three rows illustrate failure cases.
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