
A. Supplementary Appendix
A.1 Implementation Details of DCN

Since no native implementation of modulated DCN [45]
is currently available in TensorFlow, we implement DCN
of our own. To reduce the number of learning weights,
only one set of deformation parameters are predicted and
then applied along all channels, similar to the setting when
num deformable groups=1 in PyTorch implementa-
tion4.

To enforce DCN with affine constraints, we follow the
implementation of AffNet [22], and construct a network to
predict one bounded scalar to model the scaling factor in
Eq. 7, formulated as:

λ(x) = exp (tanh (x)). (16)

To model the rotation, two scalars are predicted as scaled
cosine and sine, which are then used to compute an angle
by taking:

θ(x, y) = arctan2(x, y). (17)

To compose the affine shape matrix A′, we implement the
network to predict the residual shape, and enforce detA′ =
1 by:

A′ =

(
|1 + a′′11| 0
a′′21 |1 + a′′22|

)( 1
|(1+a′′

11)(1+a′′
22)|

0

0 1

)
,

(18)
where a′′11, a

′′
21 and a′′22 lie in range (−1, 1) through an tanh

activation. In contrast to the observation in AffNet [22],
we do not suffer degeneration when joint learning all affine
parameters in DCN.

In this paper, we have concluded that the free-form DCN
is a preferable choice than other deformation parameterzi-
ation subject to geometric constraints, in the context of lo-
cal feature learning. However, as shown in Tab. 2, this dif-
ference is not that obvious. We ascribe this phenomenon
to the lack of meaningful supervision for learning complex
deformation. As also discussed in AffNet [22], a special-
ized loss may be needed to guide the local shape estima-
tion, whereas in our current implementation, the same loss
is used in both local feature learning and deformation learn-
ing (we have tried the loss in AffNet [22], whereas no con-
sistent improvement has been observed). In the future, we
will further explore this direction in order to better release
the potential of DCN.

A.2 Implementation Details of MulDet

To implement the multi-scale (pyramid) variant, we fol-
low D2-Net [7] and R2D2 [27], and feed an image pyramid

4https://github.com/chengdazhi/Deformable-Convolution-V2-
PyTorch/blob/master/modules/deform conv.py

to the network, which is constructed from the input image
sized up to 2048, and downsampled by

√
2 and blurred by a

Gaussian kernel factored 0.8 for each scale, until the longest
side is smaller than 128 pixels. In each scale, a set of key-
points are identified whose scores are above some threshold,
e.g., 0.5, and the final top-K keypoints are selected from the
keypoints combined from all scales. The inference time will
be doubled when enabling this configuration.

To implement the multi-scale (in-network) variant, we
follow LF-Net [25], and resize the feature maps from the
last convolution, i.e., conv8, into multiple scales. Specif-
ically, the resizing is repeated for N times, resulting scales
from 1/R to R, where N = 5 and R =

√
2. Each cor-

responding score map is generated as Eq. 5, then the final
scale-space score map is obtained by merging all the score
maps via weighted-summation, where the weight is com-
puted from a softmax function. Since DCN has already
handled the in-network scale invariance, we did not find this
variant useful when combining with our methods.

To implement the multi-level (U-Net) variant, we build
skip connections from two levels, i.e., conv1 and conv3,
and fuse different levels via feature concatenation. The
same training scheme is applied as in the main paper, except
that the keypoints are now derived from high-resolution fea-
ture maps.

A.3 Additional Experiments

Evaluation on dense reconstruction. In Sec. 4.1, we have
used T&T dataset [13] to evaluate the performance in two-
view image matching. Here, we resort to its original evalu-
ation protocols defined for evaluation dense reconstruction,
and integrate ASLFeat into a dense reconstruction pipeline
of our own to further demonstrate its superiority.

Specifically, we use the training set of T&T, including 7
scans with ground-truth scanned models, and use F-score
defined in [13] to jointly measure the reconstruction accu-
racy (precision) and reconstruction completeness (recall).
For comparison, we choose RootSIFT [46], GeoDesc [19]
with SIFT detector [17], and sample the features to 10K for
each method. Next, we apply the same matching strategy
(mutual check plus a ratio test at 0.8), SfM and dense algo-
rithms to obtain the final dense point clouds. As shown in
Tab. 6, ASLFeat delivers consistent improvements on dense
reconstruction. Since T&T exhibits less scale difference,
ASLFeat without the multi-scale detection yields overall
best results.

Application on image retrieval. We use an open-source
implementation of VocabTree5 [47] for evaluating image
retrieval performance on the popular Oxford buildings [49]
and Paris dataset [48]. For clarity, we do not apply advanced
post-processing (e.g., query expansion) or re-ranking meth-

5https://github.com/hlzz/libvot



Methods RootSIFT [46] GeoDesc [19] ASLFeat ASLFeat (MS)
Barn 46.27 50.08 55.54 50.27
Caterpillar 50.72 48.87 51.70 48.88
Church 42.73 42.93 42.66 37.82
Courthouse 43.11 43.96 44.41 50.39
Ignatius 66.91 64.45 67.77 63.30
Meetingroom 19.89 20.39 26.59 25.39
Truck 67.67 67.86 70.43 71.31
Mean 48.19 48.36 51.30 49.62

Table 6. Evaluation results on T&T dataset [13] for dense recon-
struction. The F-score is reported to quantify both the reconstruc-
tion accuracy and reconstruction completeness.

ods (e.g., spatial verification), and report the mean average
precision (mAP) for all comparative methods. For fair com-
parison, we sample the top-10K keypoints for each method
to build the vocabulary tree. As shown in Tab. 7, the pro-
posed feature also performs well in this task, which further
extends its usability in real applications.

RootSIFT [46] GeoDesc [19] ContextDesc [18] ASLFeat ASLFeat (MS)
Oxford5k 44.94 51.77 65.31 67.01 73.19
Paris6k 45.83 48.15 60.79 58.01 64.96

Table 7. Evaluation results on Oxford buildings [49] and Paris
dataset [48] for image retrieval. The mean average precision
(mAP) is reported.

Integration with a learned matcher. In contrast to
R2D2 [27] which strengthens the model with additional
task-specific training data and data augmentation by style
transfer, we explore the usability of equipping a learnable
matcher to reject outlier matches for improving the recov-
ery of camera poses. Specifically, we resort to the recent
OANet [40], and train a matcher using the authors’ pub-
lic implementation6 with ASLFeat. Finally, we integrate
the resulting matcher into the evaluation pipeline of Aachen
Day-Night dataset [30]. As shown in Tab. 8, this integration
(ASLFeat + OANet) further boosts the localization results.

Methods 0.5m, 2◦ 1m, 5◦ 5m, 10◦
ASLFeat 45.9 64.3 86.7
ASLFeat + OANet [40] 48.0 67.3 88.8
ASLFeat (MS) 44.9 64.3 85.7
ASLFeat (MS) + OANet 45.9 67.3 87.8

Table 8. Evaluation results on Aachen Day-Night dataset [30] for
visual localization.

A.4 Discussions

End-to-end learning with DCN. As mentioned in Sec. 3.5,
we find that a two-stage training for deformation parameters
yields better results, i.e., 72.64 for MMA@3 on HPatches
dataset (Tab. 2), while an end-to-end training results in
70.45. Although we have tried different training strategies,
e.g., dividing the learning rate of deformation parameters

6https://github.com/zjhthu/OANet.git

by 10 during end-to-end training, none of them have shown
better results than the simple separate training. It is still un-
der exploration whether an end-to-end learning will benefit
more to this learning process.
Performance regarding different feature number. In
Fig. 5, we again use HPathces dataset [1], and plot the per-
formance change (M.S. and MMA) when limiting different
maximum numbers of features.

40

42

44

46

48

50

0 2000 4000 6000 8000 10000

%
M

.S
.@

3

Maximum number of features per image

69

70

71

72

73

74

0 2000 4000 6000 8000 10000

%
M

M
A

@
3

Maximum number of features per image

Figure 5. Matching score (M.S.) and mean matching accuracy
(MMA) at an error threshold of 3px regarding different maximum
numbers of features. We report the results at 5K features (marked
in red) for our methods.

A.5 More Visualizations

We provide visualizations in Fig. 6 for comparing the
keypoints from different local features, including SIFT, D2-
Net and the proposed method.

References
[46] R. Arandjelović, and A. Zisserman. Three things everyone

should know to improve object retrieval. In CVPR, 2012. 11,
12

[47] T. Shen, S. Zhu, T. Fang, R. Zhang, and L. Quan.
Graph-based consistent matching for structure-from-motion.
In ECCV, 2016. 11

[48] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.
Lost in quantization: Improving particular object retrieval in
large scale image databases. In CVPR, 2008. 11, 12

[49] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.
Object retrieval with large vocabularies and fast spatial match-
ing. In CVPR, 2007. 11, 12



SIFT D2-Net ASLFeat SIFT D2-Net ASLFeat
Figure 6. Comparisons of keypoints from different methods.


