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Figure 1: Network structure at a glance. Encoder-decoder used for face segmentation and supervised through structure via
consensus.

1. Network Architecture

Architecture Details. Further details of our network architecture are provided in Table 1. Our network is similar to the
encoder-decoder framework U-Net [8], but it has some modifications explained below. The input resolution is 128x128,
though our model can work also with other resolutions since it is fully convolutional. The resolution is decreased only
with striding without any pooling layer. The basic block of the network consists of ReflectionPad?2, Convolution,
ELU [2] and Batch Normalization. The first encoder downsamples the input up to 32x32 to preserve some spatial
information, with a depth of 256 (layer id 19 referring to Table 1); then other convolutional layers with dilation set to 4 and
3 in a sub-encoder refine the feature maps to capture a more global scale (layer id 27 referring to Table 1). In Table 1, if
not specified, convolution is computed with dilation equal to 1. The final feature maps are concatenated together for a final
bottleneck feature map with dimensionality 512x32x32. The convolutional filters are initialized with the method described in
[3]. The decoder part takes the bottleneck feature maps as input and upscales it back to the input dimension. We used efficient
sub-pixel convolution with ratio equal to 2 applied two times in the decoder to do this upscaling, since sub-pixel convolution
has been shown to work well in super-resolution applications. We used Pytorch [7] to develop the network and sub-pixel
convolution has been implemented via PixelShuff ling.! The entire encoder-decoder has 4,524,323 parameters. The
network is supervised either with 2D softmax normalization and cross-entropy or by using our novel “structure via consensus”
method. The final network structure is displayed at a glance in Fig. 1 using [4].

I pytorch.org/docs/stable/nn.html#torch.nn.PixelShuffle
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1D Layer (type) Output Shape (BXCxHxW) Param. Size
Encoder |
1 ReflectionPad2d [64, 3, 130, 130] —
2 Conv2d [64, 64, 128, 128] 1,792
3 ELU [64, 64, 128, 128] —
4 ReflectionPad2d [64, 64, 130, 130] —
5 Conv2d [64, 128, 64, 64] 73,856
6 ELU [64, 128, 64, 64] —
7 BatchNorm2d [64, 128, 64, 64] 256
8 ReflectionPad2d [64, 128, 66, 66] —
9 Conv2d [64, 128, 64, 64] 147,584
10 ELU [64, 128, 64, 64] —
11 BatchNorm2d- [64, 128, 64, 64] 256
12 ReflectionPad2d- [64, 128, 66, 66] —
13 Conv2d [64, 128, 64, 64] 147,584
14 ELU [64, 128, 64, 64]
15 BatchNorm2d- [64, 128, 64, 64] 256
16 ReflectionPad2d [64, 128, 66, 66] —
17 Conv2d [64, 256, 32, 32] 295,168
18 ELU [64, 256, 32, 32] —
19 BatchNorm2d [64, 256, 32, 32] 512
Sub-encoder |

20 ReflectionPad2d [64, 256, 40, 40] —
21  Conv2d (dilation=4) [64, 256, 32, 32] 590,080
22 ELU [64, 256, 32, 32]
23 BatchNorm2d [64, 256, 32, 32] 512
24 ReflectionPad2d [64, 256, 38, 38] —
25 Conv2d (dilation=3) [64, 256, 32, 32] 590,080
26 ELU [64, 256, 32, 32] —
27 BatchNorm2d [64, 256, 32, 32] 512

Concat feature maps 19 and 27

Decoder 1
28 ReflectionPad2d [64, 512, 34, 34] —
29 Conv2d (64,512, 32, 32] 2,359,808
30 ELU [64,512, 32, 32] —
31 BatchNorm2d [64,512, 32, 32] 1,024
32 PixelShuffle (x2) [64, 128, 64, 64] —
33 ReflectionPad2d [64, 128, 66, 66] —
34 Conv2d [64, 128, 64, 64] 147,584
35 ELU [64, 128, 64, 64] —
36 BatchNorm2d [64, 128, 64, 64] 256
37 ReflectionPad2d [64, 128, 66, 66] —
38 Conv2d [64, 128, 64, 64] 147,584
39 ELU [64, 128, 64, 64] —
40 BatchNorm2d [64, 128, 64, 64] 256
41 PixelShuffle (x2) [64, 32, 128, 128] —
42 ReflectionPad2d [64, 32, 130, 130] —
43 Conv2d [64, 32, 128, 128] 9,248
44 ELU [64, 32, 128, 128] —
45 ReflectionPad2d [64, 32, 130, 130] —
46 Conv2d [64, 32, 128, 128] 9,248
47 ELU [64, 32, 128, 128] —
48 Conv2d [64, 3, 128, 128] 867
Total # params. 4,524,323

Table 1: Network details. Network layers, output shapes and learnable parameters.



2. Additional Qualitative Results on COFW

We show supplementary results on the Caltech Occluded Face in the Wild data (COFW) [1] in Fig. 2. The figures
augment Fig. 5 in the paper to provide further samples. The figures display the input image and its ground-truth mask; the
result obtained by Nirkin ef al. [6], obtained by aligning the faces as the mentioned in their publicly available code; our
baseline with pixel-wise softmax and cross-entropy; our final approach trained with structure via consensus. Fig. 2 show
again that even on a larger pool of samples, our method returns less sparse, more continuous occlusion masks for better face
segmentation and parsing. As a remark, we get such clean masks, much closer visually to the ground-truth compared to other
approaches, yet we do so by still performing pixel-wise inference: we do not use any super-pixel approach at test time nor
employ any post-processing step such as CRF, morphological operations etc.
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Figure 2: Additional qualitative samples from the COFW. Input image and its ground-truth mask; results by Nirkin ez
al. [6]; baseline with pixel-wise loss; our result. The faces are masked to remove occlusions according to each method.



3. Additional Qualitative Results on Part Labels

We show some supplementary qualitative results on the Part Labels database [5] in Fig. 3. On average our masks look
more continuous and greatly improve the IoU of the hair class. Fig. 3 reports the input image, the ground-truth annotated
mask, the baseline model trained with pixel-wise loss and regularization and our method with regularization. The result of
each prediction for each class is used for segmenting part of the face showing the segmentation separately for face and hair.
In some cases, the predictions of our model are better than the super-pixel labels (e.g. tenth row).
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Figure 3: Additional qualitative samples from PartLabel. Input image and its ground-truth mask; results by the baseline
with pixel-wise loss; our result. The faces are masked to decouple the face from the hair.
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