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1. Object appearance features
We additionally explore the effectiveness of our method when applied to features corresponding to the object descriptors.

To this end, we follow [11] to extract the object appearance features. We apply our STIN model replacing the bounding box
features with the convolutional ones. We test this in the few-shot compositional setting. We use a benchmark model that
combines STIN + OIE + NL using bounding box features and object appearance feature, noted as STIN + OIE + NL [BB +
OA] as well as model that combines appearance feature from the I3D network and above mentioned model trained jointly;
I3D + STIN + OIE + NL [BB + OA] and ensemble I3D, STIN + OIE + NL [BB + OA]. We present the results in Table 1.

base few-shot
model top-1 top-5 5-shot 10-shot

STIN 54.0 78.9 14.2 19.0
STIN + OIE 58.2 82.6 16.3 20.8
STIN + OIE + NL 58.2 82.6 17.7 20.7
I3D 73.6 92.2 21.8 26.7
I3D + STIN + OIE + NL 76.8 93.3 23.7 27.0
I3D, STIN + OIE + NL 76.1 92.7 27.3 32.6
STIN + OIE + NL [BB + OA] 71.6 93.0 31.7 37.2
I3D + STIN + OIE + NL [BB + OA] 73.5 97.3 31.9 36.6
I3D, STIN + OIE + NL [BB + OA] 80.9 96.1 36.8 43.1

Table 1. Few-shot compositional action recognition on base categories and few-shot novel categories. The results shown are using
detection boxes.

The above experiments suggest that our STIN model can also generalize to different types of features. Combining boxes
features with object appearance features gives 17.7 % improvement on the base validation set, 17.5% and 18.2 % improve-
ment on the few-shot setting. Combining this model with I3D also significantly boosts performance on all the validation
sets.

2. Annotation Details
We provide bounding box annotations for hands and objects parsed from the video captions on the Something-Something

V2 dataset [3] and perform our experiments on the annotated dataset. We convert the videos into frames using 12 fps. Though
there are hundreds of frames for each video, the annotation tool that we use has built-in tracking function and saves us much
time. The annotators only need to selectively annotate several key frames in the videos and the tool will interpolate the
bounding boxes in the rest of frames perfectly. The total number of annotated videos are 180,049. The average time taken
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for a single video is 1.7 minutes, and the total time taken for the whole annotation project is approximately 5101 hours. In
page 3, we provide the visualization of the annotation interface that we use in our project.

Visualization of the annotation interface for video object bounding box annotation
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3. Object Detector and Tracker Details
We illustrate more details of the implementation of the detector and the tracker as below.

Detector. We choose Faster R-CNN [10] with the Feature Pyramid Network (FPN) [8] and ResNet-101 [5] backbone. RoI-
Pooling in the original implementation is replaced by RoI-Align [4]. We use an open-sourced implementation [12] and
closely follow default training settings, except for a handful of difference: We set starting learning-rate as 0.02, and train
the model on 10 GPUs, with each GPU hosting 4 images. For training, images are resized such that their shorter edge is
randomly selected among [512, 544, 576, 608, 640] pixels, whereas for testing it is [400, 500, 576, 600] pixels. During testing
we also flip the image for ensemble. The model is initialized by weights pre-trained on COCO [9] dataset, which has 42.0
detection mAP on COCO val subset. Only two categories are registered for the detector: hand and object. Fine-tuning takes
about 2.5 days on 10 GPUs. We take detections whose scores are greater than 0.65.

Tracker. We use Kalman Filter [6] and Kuhn-Munkres (KM) algorithm [7] for the tracking components, as in [1]. At each
time step, the Kalman Filter predicts plausible whereabouts of instances in current frame based on previous tracks, then
the predictions are matched with single-frame detections by KM algorithm. The matching weight of two bounding-boxes,
denoted as u = (xu, yu, hu, wu) and v = (xv, yv, hv, wv) representing the center, height and width of the box, are defined by
a weight function g(u, v). Matched predictions are updated by detections in the current frame. To partially deal with instance
occlusion and re-entering, unmatched predictions are kept for additional Tk frames until they are discarded; unmatched
detections are registered as a possible new instance, if their presence continue for at least Tc frames. We keep at most top-k
tracklets in each video, sorted by the sum of detection scores of individual instance in each frame averaged by the length of
the tracklet (score of unmatched prediction is set as 0). Finally, we filter out the tracklets whose scores are below S. Note
that no appearance feature is used in the tracking framework.

In our implementation, we set Tk = 6, Tc = 8, k = 4 and S = 0.7. Since the instances (both subjects and objects) can
move relatively fast in human-object interactions, instead of using Intersection-over-Union (IoU) as matching function g, we
use “regression energy“ like in [2]:

g(u,v) = |xv − xu
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The maximum regressable energy is set as 6, and instances from different classes (hand and object) have infinite regression
energy.
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