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André Mateus1, Srikumar Ramalingam2, and Pedro Miraldo1

1Instituto Superior Técnico, Lisboa 2Google
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Figure 1: Visual Odometry results for the MIT/LAB, MIT/76, and BROWN/CS/3 sequences of the SUN3D data-set. For
evaluation, we consider the RANSAC ALL, FGR, and Ground-Truth trajectories. Notice we are not running the refinement in
these experiments.

These supplementary materials are organized as follows.
We start with showing some new results on nine new se-
quences from the same two data-sets used in the main docu-
ment, including some trajectories obtained from our method
against the baselines (see Sec. A). We stress that, to have
more challenging scenarios, we increase the baselines of
the pairs of 3D scans by considering a gap of 10 scans for
each trial. Furthermore, these new sequences are from the
data-sets used in the paper. We are not using new data-sets.
Then, we present the predefined transformations derived for
the minimal solvers presented in the paper (Sec. B). To end
these supplementary materials, we show some evaluation
on the use of different solvers in the proposed RANSAC
scheme (results are shown in Sec. C).

A. Results in New Sequences
This section presents results in additional sequences

from each data-set. For both SUN3D [7], and TUM [6],
four and five sequences were tested, respectively.

For the SUN3D, Tab. 1 shows that the use of pairs of
intersecting lines outperforms ICP [5], GR [1], and FGR
[8] in three sequences out of four, for rotation and transla-
tion errors. Tab. 2 presents the results for new sequences of
TUM data-set. Similar to the SUN3D, the proposed meth-
ods outperform the state-of-the-art in the majority of the se-
quences. In this case in four out of five for the rotation and

three out of five for the translation. For the SITTING and
360 sequences, where FGR presents the best results (in one
of the cases for the translation and in the other for both the
rotation and translation), our methods perform poorly be-
cause of the lower amount of lines retrieved by the method
in [2, 3], w.r.t. the other sequences from the SUN3D and
TUM.

Furthermore, the visual odometry results for three se-
quences of the SUN3D data-set are presented in Fig. 1. For
all three the RANSAC All method presents smaller drift
w.r.t the ground truth. We stress that ICP results were omit-
ted, since it presents lower performance than the methods
presented in the figure. Finally, the visual odometry results
for two of the TUM sequences in Tab. 2 are presented in
Fig. 2. The results show that when a sufficient amount of
lines that can be retrieved with the method in [2, 3] our
method outperforms the FGR method (see the results of the
DESK1 sequence). However, when this is not the case, FGR
will present smaller drift as shown in the results of the SIT-
TING sequence.

B. Predefined Transformations

This section details the computed predefined transforma-
tions used in the derivations for the minimal solvers pre-
sented in the main document.
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Figure 2: Visual Odometry results for the DESK1 and SITTING sequences of TUM data-set. We consider the RANSAC ALL
and FGR methods, against the ground-truth.

Rotation Error [Deg]
SUN3D

Method BROWN CS 3 HARVARD C5 MIT 76 MIT LAB
ICP [5] 2.73 4.41 2.10 1.20
GR [1] 1.54 1.14 1.14 1.45

FGR [8] 1.74 1.64 1.16 1.32
RANSAC 6L 1.49 1.47 1.11 0.99
RANSAC 3Q 1.67 1.68 1.38 1.09

RANSAC Ours 1.46 1.29 1.14 1.01
RANSAC All 1.37 1.26 1.24 0.99

Ours + Refinement 1.46 1.25 1.12 0.99
Translation Error [cm]

SUN3D
Method BROWN CS HARVARD C5 MIT 76 MIT LAB
ICP [5] 19.61 10.73 11.54 7.63
GR [1] 7.87 6.45 5.93 5.92

FGR [8] 9.75 6.87 4.78 4.51
RANSAC 6L 6.89 6.88 4.97 4.10
RANSAC 3Q 7.38 8.02 5.10 4.35

RANSAC Ours 6.66 7.59 4.93 4.21
RANSAC All 6.82 6.89 4.81 3.73

Ours + Refinement 6.47 5.95 4.78 4.12

Table 1: Median rotation and translation errors for SUN3D
data-set [7].

B.1. Predefined Transformations for 3L1P

For the U3L1P ∈ SO(3) and u3L1P ∈ R3 as shown in
Fig. 2(a) of the paper, we start by defining the third column
of U3L1P:

u3 = π1/‖π1‖. (1)

Then, we set two possible guesses for u1 (this rotation can
be defined up to a rotation degree of freedom):

u−1 = [0 1 0]× u3 and u+1 = [1 0 0]× u3, (2)

and set the first column of U3L1P as u1 = u∗1/‖u∗1‖ where
u∗1 is equal to the vector in (2) with the larger norm. Then,

Rotation Error [Deg]
TUM

Method 360 DESK1 CABINET SITTING PIONEER
ICP [5] 14.72 5.71 3.40 0.75 7.24
GR [1] 3.35 3.03 3.01 1.14 2.92

FGR [8] 2.96 2.84 2.77 0.70 4.31
RANSAC 6L 3.69 2.23 3.29 0.77 2.29
RANSAC 3Q 4.07 2.49 2.91 0.96 2.88

RANSAC Ours 2.97 1.97 2.41 0.82 2.06
RANSAC All 2.68 2.06 2.43 0.80 2.01

Ours + Refinement 2.97 1.94 2.10 0.78 2.12
Translation Error [cm]

TUM
Method 360 DESK1 CABINET SITTING PIONEER
ICP [5] 28.85 11.52 8.00 1.46 18.63
GR [1] 8.62 5.18 6.84 3.39 13.33

FGR [8] 6.12 4.34 5.19 1.43 14.62
RANSAC 6L 9.73 3.71 7.22 2.52 8.45
RANSAC 3Q 10.54 4.05 5.72 3.44 10.33

RANSAC Ours 9.66 3.05 4.76 2.60 10.38
RANSAC All 8.46 3.12 3.83 2.54 8.54

Ours + Refinement 9.66 3.27 4.92 2.54 8.90

Table 2: Median rotation and translation errors for TUM
data-set [6].

we define

U3L1P =
[
u1 u3 × u1 u3

]
, and u3L1P = π̃1U3L1Pπ1.

(3)

B.2. Predefined Transformations for 1L2P

Consider now the predefined transformations shown in
Fig. 2(b) of the main document. For the U1L2P ∈ SO(3)
and u1L2P ∈ R3, we use the method derived in Sec. B.1. For
V1L2P ∈ SO(3) and v1L2P ∈ R3, we first find the 3D line
r (in Plücker coordinates) that represents the intersection of
the two planes π1 and π2 [4]:

r =
[
π1 × π2 π̃1π2 − π̃2π1

]
. (4)



Then, we define

V1L2P =

r1/
√
r21 + r22 −r2/

√
r21 + r22 0

r2/
√
r21 + r22 r1/

√
r21 + r22 0

0 0 1

 , (5)

where r1 and r2 are the 1st and 2nd elements in vector r.
Now, for the translation vector v1L2P, we first compute the
closest 3D point x ∈ R3 to the line r:

x = r̂ × r, (6)

and v1L2P is given by

v1L2P = V1L2Px. (7)

B.3. Predefined Transformations for 3L1Q

In this case the transformation consists only in a transla-
tion, since we are moving the origin of the 3D data to the
point q1. Thus, the U3L1Q ∈ SO(3) and u3L1Q ∈ R3 in
Fig. 2(c) of the paper, are represented as:

U3L1Q = I, (8)

and
u3L1Q = −q1, (9)

where I is the 3× 3 identity matrix.

B.4. Predefined Transformations for 1L2Q

This subsection presents the predefined transformation
for the solver in Section B.4, as shown in Fig. 2(d) of the
paper. The first transformation consists in a pure translation
to the point q1, which can be written as:

U1L2Q = I3, and u1L2Q = −q1, (10)

where U1L2Q and u1L2Q are a rotation matrix and a transla-
tion vector respectively. The second step consists in a pure
rotation V1L2Q, which can be obtained in a similar fashion
to the matrix U1L2P in Sec. B.2. Both cases can be seen as
aligning the z−axis with either the plane normal in Sec. B.2
or the direction from q2 to q1.

B.5. Predefined Transformations for 1L1Q1P

This subsection presents the predefined transformation
for the solver in Section B.5, which are depicted in Fig. 2(e)
of the main document. The first transformation consists in
a pure translation to the projection of point q to π. This
projection can be obtained by computing the signed dis-
tance dpq of the point to the plane, and then subtracting the
plane normal vector scaled by the distance to the point. The
signed distance can be obtained by inputting the point in the
plane equation as:

dpq = πTq+ π̃ (11)

The point qπ in the plane corresponding to the projection of
q to π is obtain by:

qπ = q− dpqπ. (12)

The first transformation is thus given by:

U1L1Q1P = I3, and u1L1Q1P = −qπ, (13)

The second step consists in a pure rotation V1L1Q1P, which
can be obtained in a similar fashion to the matrix U1L2P in
Sec. B.2.

C. Minimal Solvers in RANSAC
This section presents the evaluation of the minimal

solvers proposed in this work vs. the minimal solvers using
only 3D point intersection correspondences or line intersec-
tions, in the hybrid RANSAC framework.

The data for this tests was generated by at first sampling
a pair of line intersections – represented by two points – in
each frame without noise. Then, 15 points are sampled be-
tween the two points representing each line. Noise is added
to those points, by sampling a point in Gaussian centered
at the point, and with standard deviation given by a defined
percentage of the size of the cube, where the lines are cre-
ated from. In this work, the size of the cube is set to 40
units. Finally, a line is fitted to each set of points using least
squares. Two line intersection can be created from each pair
of the original lines, by pair the first line the one frame to
the second and vice-versa. A point correspondence is cre-
ated from each pair of lines by taking the point of intersec-
tion of the lines in each frame. Since noise was added to the
lines, these do not intersect necessarily, so the mean point of
the closest points in each intersecting line was considered.
Plane correspondences are created by fitting a plane in each
frame to the noisy points using least squares. Outliers are
added afterward, by applying a random rigid transformation
to a defined percentage of the data.

Two tests were performed. The first consisted of fixing
the outlier percentage at 30%, and the percentage of the
noise added to the data is varied from 0.1% to 0.5% with
increases of 0.05%. For each noise and outlier percent-
age, 100 runs of RANSAC with different randomly gener-
ated data-sets were performed. The results are presented in
Fig. 3(a) and Fig. 3(b) for the median rotation and transla-
tion errors respectively. Even though RANSAC 3Q presents
similar performance to RANSAC Ours and All for the lower
noise levels, the latter methods perform better for higher
levels of noise. The second consisted of the reverse, i.e.,
the noise percentage was fixed, and the outlier percentage
ranged from 10% to 50% with increments of 5%. The re-
sults are presented in Fig. 3(c) and Fig. 3(d) for the me-
dian rotation and translation errors respectively. From these
results, we conclude that both RANSAC Ours and All are
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(a) Median rotation error for differ-
ent noise levels.
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(b) Median translation error for dif-
ferent noise levels.
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(c) Median rotation error for differ-
ent outlier percentages.
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(d) Median translation error for dif-
ferent outlier percentages.

Figure 3: Synthetic data evaluation of the hybrid RANSAC framework with different sets of minimal solvers.

more robust to outliers than RANSAC 6L and 3Q, indicat-
ing the improvements accomplished by mixing point and
plane matches with line intersections.
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