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Abstract

In this supplemental document, we compare the genera-
tion quality of our method to different baselines (Section 1),
qualitatively show the diversity of our generation method
(Section 2), demonstrate results on facial occlusions (Sec-
tion 3), explain the limitations of our model (Section 4), and
detail the architecture of our models (Section 5).

1. FID of baseline methods

In Table 1 we show quantitative results on the quality of
the generated images. We use the FID score [2], a metric
that compares the statistics of generated samples to those of
real samples. The lower the FID, the better. To quantify the
quality of generated samples, they are first embedded into
a feature space given by (a specific layer) of Inception Net.
Then, viewing the embedding layer as a continuous multi-
variate Gaussian, the mean and covariance are estimated for
both the generated data and the real data. The Fréchet dis-
tance between these two Gaussians is then used to quantify
the quality of the samples:
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where ((y, Xy), and (pg, X ) are the mean and covari-
ance of the sample embeddings from the data distribution
and model distribution, respectfully. The authors show that
the score is consistent with human judgment and is robust
to noise. Finally, FID can detect intra-class mode dropping,
e.g. a model that generates only one image per class will
have a high FID.

Our method reaches a very low FID score quantitatively
showing that the quality of the generated images is very
high. Pixelization methods unsurprisingly reach a very high
FID score. The higher the number of pixels merged together
is, the higher is the FID score. Similar behavior is seen for
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Model FID ()
Pixelization 8 by 8 510.83
Pixelization 16 by 16  318.43
Blur 9 by 9 54.50
Blur 17 by 17 152.03
Pix2Pix [3] 121.41
CycleGAN [7] 185.26
Ours 2.08

Table 1: Quality and diversity measurements of different meth-
ods.

the blurring methods where the higher the level of blur is,
the higher is the FID score.

We train GAN-based image translation methods [3, 7]
where the source domain are the landmarks and the target
domain are the images. We were surprised to see that the
FID score of image translation methods is very high, com-
parable to blurring methods. We investigate this by check-
ing the visual quality of the generated images. We see that
the models learn to generate only slight variations of the
same face (that can be considered an average face). We con-
jecture that the main reason for this problem is the sparse
signal of the source domain. We show a qualitative evalua-
tion of the baseline methods in Fig. 2 where our method is
the only one that generates realistically looking images.

2. Diversity of the generated images

In Fig. 1 of the main paper, we showed triplets of images,
with the first image in the triplet being the source image, and
the other two images being different anonymized versions
of it.

In Fig. 3 we perform a similar experiment, but this
time instead of showing only 2 anonymized versions of the
source image, we present 9 different versions of it. We see
that the generated images have still different identities that
are sufficiently different from each other.



Figure 1: First column contains source images, all other
columns are anonymized versions of our method with dif-
ferent control vectors.

3. Removing glasses and mustache

In Fig. 1 we perform an experiment where the source
images contain faces of people with glasses, or with a mus-
tache. Considering that our generator uses as input the
landmarks of the face (instead of the entire face), it has
no knowledge whatsoever that the source image might con-
tain glasses. Unsurprisingly, the generated images do not
contain glasses or mustache. Note that the quality of the
generated images does not suffer and during the blending
process, the generator inpaints the region where the source
image contained the glasses.

4. Limitations

A weakness of all current de-identification methods
[4, 5, 1] is that they need the original faces to be initially
detected before they can be anonymized. Consequently,
any face that has not been detected can not be anonymized.
Thus, all the aforementioned methods are not deployable in
systems where the anonymization must be guaranteed. Our
method suffers from a similar issue, if a face does not get
detected, then its landmark will not get generated, and so
the model will not generate the anonymized version of the
face. As future work, we plan on investigating this prob-
lem in two directions: deploying an ensemble of detection
networks to minimize the probability of faces not getting
detected; and anonymizing entire images without the need
of detecting the original faces on them.

Another limitation of landmarks usage is the occurrence
of occlusions in front of a face. Since the generated face
is based on the landmarks, these occlusions are going to be
removed (e.g. glasses as in Fig. 1). The problem can be

resolved by detecting such occlusions and treating them as
part of the background mask.

Finally, like in other deep learning anonymization frame-
works, the more different the images are to the images of
the training dataset, the worse is the quality of the gener-
ation. CelebA dataset offers multiple images per identity
with good quality but with a significant bias towards frontal
faces (since they are using photos of celebrities). Conse-
quently, our method performs best when used in similar
datasets. For our model to perform as well in extreme poses,
it needs to be additionally trained in a dataset containing
such poses.

5. Network architecture

In Table 2 we show the architecture of the generator.
The generator uses an encoder-decoder architecture, and re-
ceives as input a 6-dimensional image that is created by con-
catenating the landmark image with the masked background
image. It encodes the input image into a 3-dimensional ten-
sor that has 256 channels. In the bottleneck, the encoded
image is concatenated with the identity embedding (that is
an output of the transposed convolution network). Finally,
the network decodes the combined embedding, to produce
the anonymized version of the source image.

In Table 3 we show the architecture of the discriminator.
The network receives as input a 3-dimensional image that
is created by combining the generated face with the masked
background image. Then it uses a series of residual blocks.
Finally it uses 2 fully-connected layers. The network has
the same architecture as the siamese network that we use
for identity guidance.

In Table 4 we show the architecture of the embedding
network. The network receives as input the label of the de-
sired identity (given in one-hot format) and produces a 3-
dimensional tensor. This tensor is fed into the bottleneck of
the generator.

Finally, we give the architecture of the residual blocks
used in all the networks. The architectures of the “residual
block down”, “residual block up” and “’residual block™ are
given on Tables 5, 6 and 7 respectively.



Generator

Layers Output size
Input 6 x 128 x128
Residual Block Down 32x 64 x 64
Residual Block Down 64 x32x32
Residual Block Down 128 x 16 x 16
Residual Block Down 256 x 8x 8
Residual Block Down 256 x4 x4
Concatenate with the ID embedding 512x4x4
3x3 stridel conv + ReLU 256 x4x4
Residual Block 256 x4 x4
Residual Block 256 x4 x4
Residual Block 256 x4 x4
Residual Block 256 x4 x4
Residual Block Up 256 x 8 x 8
Residual Block Up 128x 16 x 16
Residual Block Up 64 x 32 x 32
Residual Block Up 32x64x 64
Residual Block Up 16 x 128 x 128
3x3 stridel conv 3x 128 x 128

Table 2: The network architecture of our generator.

Discriminator
Layers Output size
Input 3x 128 x128
Residual Block Down | 32 x 64 x 64
Residual Block Down | 64 x 32 x 32
Residual Block Down | 128 x 16 x 16
Residual Block Down 256 x8x 8
Residual Block Down 512x4x4
FC + LeakyReLU 1024
FC + LeakyReLU 1

Table 3: The network architecture of our discriminator.

Transposed Convolutional Neural Network

Layers Output size
Input N
(FC + LeakyReLU) x 7 512

Reshape 32x4x4

3x3 stride 1 conv + LeakyReLU + IN 64x4x4
3x3 stride 1 conv + LeakyReLU + IN 128 x4 x4
3x3 stride 1 conv + LeakyReLU + IN 256 x4 x4
Concatenate with the landmark embedding | 512x4 x4

Table 4: The architecture of our transposed convolutional neural
network.

Residual Block Down
Input
3x3 stridel conv + ReLU
3x3 stridel conv
2x2 average pooling
Summation
Instance Normalization

1x1 stridel conv
2x2 average pooling

Table 5: The network architecture for the residual block
down module.

Residual Block Up
Input
IN + ReLU 2x2 Upsample
2x2 Upsample 1x1 stridel conv

3x3 stridel conv + IN + ReLU
3x3 stridel conv
2x2 average pooling
Summation
Instance Normalization

Table 6: The network architecture for the residual block up
module.

Residual Block
Input
3x3 stridel conv + IN + ReLU
3x3 stridel conv + IN
Summation with Input

Table 7: The network architecture for the residual block module.
IN stands for Instance Normalization [6]



Figure 2: Our method compared with other anonymization baselines. From up to down: Original, CIAGAN, Blur 17 by 17,
Blur 9 by 9, Pixelization 16 by 16, Pixelization 8 by 8, Pix2Pix, CycleGAN.



Figure 3: The images in the first column are the source images, all the other images are anonymized versions of the source

images, where the anonymization process uses different control vectors.
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