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Figure 1: Two results of our approach on real data (Flower LF). Out input is a focal stack (left side on each panel) and the
predicted outputs are depth and all-in-focus (AiF) images. For this dataset, we have only AiF ground-truth (GT) images but
no depth ground-truth.

Abstract

In this supplemental document, we demonstrate qualita-
tive results on dynamic stacks (Section 1), visually compare
results of our method with monocular depth estimation ones
(Section 2), show additional qualitative results on synthetic
and real data (Section 3), describe the all-in-focus estima-
tion method (Section 4), detail the architecture of our mod-
els (Section 5), and explain failure cases (Section 6).

1. Dynamic stacks

In this section, we show the capturing method with an
android smartphone application and qualitative results on
these data.

Real data capture. To capture images with constantly
changing lens focus, we developed an android application
which automatically changes the lens focus while capturing
pictures. The advantage of using an android phone when
recording a scene is that the focus distance can be set via
software and the lens will automatically adjust itself. How-
ever, a drawback is that the camera usually possesses small
lenses with a fixed focal length. This leads to a wide depth
of field, meaning the range where objects appear sharp is
very large.

We used a Samsung Galaxy S7 to capture dynamic focal

stacks. Our application captures a limited number of frames
in a burst manner with changing focus distance. The change
in the focus distance is given by a linear function based on
the current recording time as seen in Fig. 2. We sweep from
the minimum to the maximum focus distance and capture 5
frames, then start again from the minimum focus distance.
This removes the difficulty for the networks to recognize if
the focus distances were increasing or decreasing.

Focus Breathing. Focus breathing or lens breathing is
the slight change of the field of view when the focus dis-
tance changes. This effect is more severe when the focus
distance changes by a very large distance, e.g. by focusing
on a very close object and then focusing to the infinity. As a
result, we have a slight magnification effect when decreas-
ing the focus distance.

In what amount focus breathing is noticeable depends
on the specific lens. For our approach, this might interfere
with our depth estimation process since this distortion intro-
duces additional change in the frames. However, our tests
show that the CNNs are nevertheless able to produce proper
predictions from focus-breathing contaminated data. Thus
a special mechanism to remove the focus breathing is not
necessary.

Qualitative results. In Fig. 3, we show depth predic-
tion results of our method on real dynamic stacks. Dynamic
stacks (with 4 frames each) were captured with our android
application with slight change in camera position.
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Figure 2: A screenshot of our android application on the
left side. Focus distance change during capture on the right
side.
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Figure 3: Estimated depth with our method on dynamic
stacks with 4 inputs (only 2 are shown).

2. Comparison with a monocular depth estima-
tion

In Fig. 5, we show results of our synthetically trained
model on images from MobileDepth [8] dataset (first 3
columns) and on images taken with our consumer smart-
phone (last 3 columns). We capture a focal stack with only
2 images. We compare our method to recent state-of-the-
art VNL [9] trained on indoor NYU Depth V2 dataset[6]
and MegaDepth method [5] trained on outdoor MegaDepth
dataset. We do not have ground truth depth available for
those images, therefore we compare all method visually on
the correctness of the relative depth.

In Fig. 5, we show that our method consistently es-
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Figure 4: Refocus results based on estimated AiF and Depth
images. In each panel, images on the left side show refo-
cused images and images on the right side - depth map with
highlighted in-focus areas.

timates better relative depth, although it has never been
trained on real images with real blur. Other methods have
smoother depth predictions and perform well on certain im-
ages that rely more on perceptive cue (column 1 and 5), but
they fail on harder scenarios. We especially can see the bias
of these methods on column 6 where we capture an image
from the top down.

3. Visual Results
In this section, we show our additional qualitative results

on another set of images. In Fig. 1, we show AiF and depth
estimation results on real data for our model trained only on
synthetic data. In Fig. 6, 7 and 9, we show depth estimation
on synthetic test data.Fig. 7 has inputs with a wide depth
of field (DoF) and DefocusNet correctly estimates defocus
maps, but larger DoF leads to a flawed depth map.

Defocus. Fig. 6, 7 and 9 show defocus on synthetic
data. Fig. 8 shows results on real photos. In-focus areas
shown darker in defocus maps. From these figures, we can
see that DefocusNet works well even with unordered, arbi-
trary sized inputs. Note, in presented figures, the number of
inputs varies from 2 to 10. Our model can also effectively
deal with different image domains: real and synthetic.

Refocus. Fig. 4 shows examples of synthetically refo-
cused images on two different focus distances. We use AiF
and depth images that resulted from our joint model. We
choose a depth segment that kept in-focus and sequentially
blur everything else. We use a simple approach for refo-
cusing: blur the whole image using convolution operations
except the target in-focus area (highlighted in red). The
amount of blur depends on distance from the camera and
target in-focus depth.

Additionally, in Figure 10, we show another example
of sequential defocus, depth and AiF refinement with the
growing number of inputs.
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Figure 5: Depth estimation comparison on real data. 1st row: input images, 2nd row: our results on a focal stacks (with
2 images) , 3rd row: results of VNL [9], 4th row: results of Megadepth [5] - on single images. First 3 images are from
MobileDepth [8] dataset and next 3 images are taken with a smartphone.
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Figure 6: DefocusNet and DepthNet results on synthetic
dataset with only two inputs, i.e., near and far focused.
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Figure 7: Defocus and depth estimation results on images with wide depth of fields. Most of the images are already sharp
and our DefocusNet correctly estimates that (black pixel shows in-focus, white - out-of-focus). Depth estimation works a lot
worse since defocus difference is small (unlike in Fig. 9) and training data has only narrow DoF images.
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Figure 8: Defocus map estimation (the model is trained only on synthetic data). Darker pixels show regions with sharper
details (more in-focus). Top rows show results on ordered input (1st and 2nd rows) in LF Flower data and bottom rows show
results on unordered input (3rd and 4th rows) in Mobile Depth from Focus dataset.
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Figure 9: Defocus and depth estimation results on images with narrow depth of fields.
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Figure 10: Our sequential estimates on a real focal stack. The first row are inputs to our pipeline. The other horizontal
sequences show our outputs for a growing number of input frames. The results on the left use only the first input image and
on the right use all five inputs. Note how adding inputs from different focus distances (inputs 2 and 3) improves depth and
all-in-focus estimates.



4. All-in-Focus estimation

For image post-processing applications such as refocus-
ing, additionally to depth map, we also need an all-in-focus
(AiF) image where all pixels are appropriately sharp. Our
model already estimates defocus maps that show image
sharpness level given a focal stack. By combining differ-
ent image parts from a focal stack and their corresponding
defocus maps, we can estimate final all-in-focus image. For
this reason, we propose to incorporate such estimation in-
side our network, reusing the focal stack and estimated de-
focus maps. The AiF image is computed by an additional
CNN head, termed AiFNet (Fig. 11).
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Figure 11: The pipeline of our approach.

4.1. Methodology

Similar to the described DefocusNet, AiFNet globally
pools features from shared network branches, each of which
processes an input image from the focal stack. The main
difference in AifNet design is that we do not use an AE ar-
chitecture, but rather a refining architecture. This consists
of residual blocks that maintain the same resolution in be-
tween layers. This is inspired by super-resolution networks
that have a similar architecture of residual blocks [4, 7]. The
main goal of this architecture is to sharpen input images and
combine all sharpest regions (indicated by a defocus map)
in a single AiF image.

Additionally, to make training focus on sharp details, the
AiFNet has a second output that regresses an edge map. The
edge map is a binary single-channel image that indicates the
presence of an edge. We pre-compute ground-truth edge
maps with a Canny edge detector method [1] on all-in-focus
images. We get it for free and it acts as additional supervi-
sion on sharp details.

For the training, we use L1 loss between estimated and
ground-truth depth, perceptual loss on features[3] with pre-
trained VGG and L1 loss on edge map.

Loss = λa
∑
‖Idefocus − Edefocus)‖2+

λc
∑
‖Iaif − Eaif‖1+

λd
∑
‖ΦV GG(Iaif )− ΦV GG(Eaif )‖1+

λe
∑
‖Iedges − Eedges‖1, (1)

where λa,c,d,e are weight coefficients and ΦV GG represent
a specific VGG-layer used to compute the perceptual loss.

4.2. Evaluation

Metrics. For all-in-focus comparison, we compare the
structural similarity (SSIM) and the peak signal-to-noise ra-
tio (PSNR) metrics. For SSIM and PSNR, higher value is
better.
Datasets. We qualitatively evaluate our method on syn-
thetic and real datasets.
(i) Synthetic dataset. Synthetic test data is the same as the
synthetic test data in Section 5.2 of the main paper. We use
all 4 test sets to evaluate generalization: Shape (new ob-
jects), Appearance (new materials and illuminations), Wide
DoF (singinifantly bigger f-number) and Medium Dof tests
(slightly bigger f-number).
(ii) Flower Light-Field (LF) dataset. This dataset was used
in [7], but the test set has not been made publicly available
for comparison. We used their original light-field dataset
and we produced focal stacks using a toolbox from [2].

4.3. Ablation Study on Synthetic Dataset

We quantitatively analyze our method’s generalization
capabilities to new environments and camera settings on 4
different synthetic test modalities.
Architecture choice. From tests in Table 1, we can sum-
marize that relying on defocus with a focal stack (row 4.)
generalizes better than doing the direct estimation (row 3).
Is defocus needed? For all-in-focus estimation, see Table
1, our defocus approach on a focal stack (row 4.) shows a
similar or better performance across all tests.
Single image vs. Focal stack. In Table. 1, we show the
benefits of using a full focal stack for AiF prediction as op-
posed to using only a single image. Single image networks
perform worse, as they are not able to rely on more infor-
mation about sharp regions comparing to the focal stack.

4.4. Evaluation on Real data

Flower LF dataset. Table 2 shows the results of our
method on Flowers dataset. We show the generalization
capability of our model trained on synthetic data for all-in-
focus estimation on real data, and compare it with a model
trained directly on this real dataset.



Models Shape Appearance Wide DoF Medium DoF
All Random All Random All Random All Random

1. Single RGB → AiF 0.935 / 82.4 - 0.940 / 82.2 - 0.963 / 84.4 - 0.957 / 83.7 -
2. Single RGB → Defocus → AiF 0.927 / 81.2 - 0.935 / 81.1 - 0.953 / 82.5 - 0.950 / 82.1 -
3. FS → AiF 0.938 / 81.8 0.646 / 70.6 0.950 / 81.9 0.633 / 68.8 0.967 / 84.4 0.644 / 69.3 0.962 / 83.9 0.642 / 69.0
4. FS → Defocus → AiF 0.969 / 85.8 0.936 / 82.8 0.962 / 82.8 0.928 / 80.5 0.965 / 82.6 0.963 / 82.3 0.967 / 83.2 0.955 / 82.2

Table 1: Results on the synthetic data test sets for all-in-focus estimation models with focal stacks (FS) or single RGBs as
input. All tests show SSIM/PSNR metrics values.
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Figure 12: Qualitative all-in-focus results on Flower
dataset. We show comparison between a joint architecture
model trained on synthetic data (PoolAE on Synthetic) and
direct approaches that are trained on real data.

We can see that our proposed model with focal stacks
and defocus (row 7) perform better among models trained
on synthetic data and close to models trained on real data.
We also show qualitative results in Fig. 12. The main issues
with synthetically trained models are that they produce AiF
images with slightly different tone and slight artifacts on
saturated areas as you can see in Fig.12. These issue lead to
a small drop in quantitative results.

Single Image Models SSIM PSNR
RGB → AiF (S) 0.861 79.3
RGB → AiF (R) 0.908 82.6
RGB → Defocus → AiF (S) 0.858 78.2
RGB → Defocus → AiF (R) 0.904 82.3
Focal Stack Models SSIM PSNR
FS → AiF (S) 0.87.6 80.1
FS → AiF (R) 0.922 82.1
FS → Defocus → AiF (S) 0.899 78.9
FS → Defocus → AiF (R) 0.938 82.4

Table 2: Results of all-in-focus estimation on Flower LF
dataset. (S) - trained on the synthetic data, (R) - trained on
the real data



5. Network Architecture Details
The network architecture of the three inter-connected

neural networks that make up our approach is detailed in
Figures 13, 15 and 14. All models use the network design
with global pooling across several inputs, but we show only
one branch (input) since every branch uses an identical net-
work with shared weights.
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Figure 13: The architecture of several convolutional blocks
mentioned in all networks, input is from the top side.
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Figure 14: Our network architectures for one
branch (input). The numbers in each box denote
width×height×channels of the layer’s output and a
plus in box represents addition of feature maps. The
architecture of AiFNet, which learns a color all-in-focus
image from a color out-of-focus image and a corresponding
grayscale defocus map. .
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Figure 15: Our network architectures for one branch (input). The numbers in each box denote width×height×channels of the
layer’s output and a plus in circle represents concatenation of feature maps. Right: The architecture of DefocusNet, which
learns a grayscale defocus map from a color input image. Left: The architecture of DepthNet, which learns a grayscale depth
map from a grayscale defocus map. Note the skip-connections are all from the DefocusNet encoder.



6. Limitations
We show the main limitations in Fig. 16 and 17. If

trained on synthetic data, in some examples, AiF model es-
timates have slightly different color tone. Such artifacts can
be adjusted with post-processing techniques.

Depth estimation mainly struggles with large empty
(texture-less) surfaces (e.g. walls, floors) and the depth gra-
dient transition. Our synthetic data is rendered with a lot of
random objects uniformly scattered around a scene, hence
we lack scenes with large empty areas. So the solution is
to complement training data with such scenes. Although,
comparing to model-based approaches, our model correctly
ignores small color variations on similar depth levels, e.g.
depth map on the right side highlights the numbers on but-
tons which are supposed to have the same depth).

Estimated 
AiF

GT AiF

Figure 16: Our All-in-Focus (AiF) prediction model trained
only on synthetic data creates, in some examples, a slight
change in color tone in the output.

Depth. Suwajanakorn et al Depth. Ours Input example (Far-focus)

Figure 17: Failure examples for our depth estimation model
(middle column) trained on synthetic dataset: large texture-
less (e.g. walls) and mirror surfaces. Right column shows
one of the input images. Note, these are common failure
cases, especially for data-driven models.
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