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1. Appendix A: Additional Figures
Here we provide further samples of the output of our

super-resolution method for illustration in Figure 1. These
results were obtained with ×8 scale factor from an input of
resolution 16 × 16. This highlights our method’s capacity
to illustrate detailed features that we did not have space to
show in the main paper, such as noses and a wider vari-
ety of eyes. We also present additional examples depicting
PULSE’s robustness to additional degradation operators in
Figure 2 and some randomly selected generated samples in
Figures 3, 4, 5, and 6.

2. Appendix B: Implementation Details
2.1. StyleGAN

In order to generate experimental results using our
method, we had to pick a pretrained generative model to
work with. For this we chose StyleGAN due to its state-of-
the-art performance on high resolution image generation.

StyleGAN consists of two components: first, a mapping
network M : R512 → R512, a tiling function T : R512 →
R18×512, and a synthesis network S : R18×512 × N →
R1024×1024 where N is collection of Euclidean spaces of
varying dimensions representing the domains of each of the
noise vectors fed into the synthesis network. To generate
images, a vector z is sampled uniformly at random from
the surface of the unit sphere in R512. This is transformed
into another 512-dimensional vector by the mapping net-
work, which is replicated 18 times by the tiling function T .
The new 18 × 512 dimensional vector is input to the syn-
thesis network which uses it to generate a high-resolution,
1024×1024 pixel image. More precisely, the synthesis net-
work consists of 18 sequential layers, and the resolution of
the generated image is doubled after every other layer; each
of these 18 layers is re-fed into the 512-dimensional out-
put of the mapping network, hence the tiling function. The
synthesis network also takes as input noise sampled from
the unit Gaussian, which it uses to stochastically add details
to the generated image. Formally, η is sampled from the
Gaussian prior on N , at which point the output is obtained

by computing S(T (M(z)), η).

2.2. Latent Space Embedding

Experimentally, we observed that optimizing directly on
z ∈ S511 ⊂ R512 yields poor results; this latent space is
not expressive enough to map to images that downscale cor-
rectly. A logical next step would be to use the expanded
18 × 512-dimensional latent space that the synthesis net-
work takes as input, as noted by Abdal, Qin, and Wonka
[1]. By ignoring the mapping network, S can be applied
to any vector in R18×512, rather than only those consisting
of a single 512-dimensional vector repeated 18 times. This
expands the expressive potential of the network; however,
by allowing the 18 512-dimensional input vectors to S to
vary independently, the synthesis network is no longer con-
strained to the original domain of StyleGAN.

2.3. Cross Loss

For the purposes of super-resolution, such approaches
are problematic because they void the guarantee that the al-
gorithm is traversing a good approximation ofM, the natu-
ral image manifold. The synthesis network was trained with
a limited subset of R18×512 as input; the further the input
it receives is from that subset, the less we know about the
output it will produce. The downscaling loss, defined in the
main paper, is alone not enough to guide PULSE to a realis-
tic image (only an image that downscales correctly). Thus,
we want to make some compromise between the vastly in-
creased expressive power of allowing the input vectors to
vary independently and the realism produced by tiling the
input to S 18 times. Instead of optimizing on downscal-
ing loss alone, we need some term in the loss discouraging
straying too far in the latent space from the original domain.

To accomplish this, we introduce another metric, the
“cross loss.” For a set of vectors v1, ..., vk, we define the
cross loss of v1, ..., vk to be

CROSS(v1, ..., vk) =
∑
i<j

|vi − vj |22

The cross loss imposes a penalty based on the Euclidean
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Figure 1. Further comparison of PULSE with bicubic upscaling, FSRNet, and FSRGAN.

distance between every pair of vectors input to S. This can
be considered a simple form of relaxation on the original
constraint that the 18 input vectors be exactly equal.

When v1, ..., vk are sampled from a sphere, it makes
more sense to compare geodesic distances along the sphere.
This is the approach we used in generating our results. Let
θ(v, w) denote the angle between the vectors v and w. We
then define the geodesic cross loss to be

GEOCROSS(v1, ..., vk) =
∑
i<j

θ(vi, vj)
2

.
Empirically, by allowing the 18 input vectors to S to vary

while applying the soft constraint of the (geo)cross loss, we
can increase the expressive potential of the network without
large deviations from the natural image manifold.

2.4. Approximating the input distribution of S

StyleGAN begins with a uniform distribution on S511 ⊂
R512, which is pushed forward by the mapping network to a
transformed probability distribution over R512. Therefore,
another requirement to ensure that S([v1, ..., v18], η) is a
realistic image is that each vi is sampled from this push-
forward distribution. While analyzing this distribution, we
found that we could transform this back to a distribution on
the unit sphere without the mapping network by simply ap-
plying a single linear layer with a leaky-ReLU activation–
an entirely invertible transformation. We therefore inverted
this function to obtain a sampling procedure for this distri-
bution. First, we generate a latent w from S511, and then
apply the inverse of our transformation.

2.5. Noise Inputs

The second parameter of S controls the stochastic vari-
ation that StyleGAN adds to an image. When the noise
is set to 0, StyleGAN generates smoothed-out, detail-free
images. The synthesis network takes 18 noise vectors at
varying scales, one at each layer. The earlier noise vec-
tors influence more global features, for example the shape
of the face, while the later noise vectors add finer details,
such as hair definition. Our first approach was to sample
the noise vectors before we began traversing the natural im-
age manifold, keeping them fixed throughout the process.
In an attempt to increase the expressive power of the syn-
thesis network, we also tried to perform gradient descent
on both the latent input and the noise input to S simulta-
neously, but this tended to take the noise vectors out of the
spherical shell from which they were sampled and produced
unrealistic images. Using a standard Gaussian prior forced
the noise vectors towards 0 as mentioned in the main pa-
per. We therefore experimented with two approaches for
the noise input:

1. Fixed noise: Especially when upsampling from 16 ×
16 to 1024× 1024, StyleGAN was already expressive
enough to upsample our images correctly and so we
did not need to resort to more complicated techniques.

2. Partially trainable noise: In order to slightly increase
the expressive power of the network, we optimized on
the latent and the first 5-7 noise vectors, allowing us
to slightly modify the facial structure of the images we
generated to better match the LR images while main-



Figure 2. (x32) Additional robustness results for PULSE under additional degradation operators (these are downscaling followed by Gaus-
sian noise (std=25, 50), motion blur in random directions with length 100 followed by downscaling, and downscaling followed by salt-
and-pepper noise with a density of 0.05.)

Nearest Bicubic FSRNet FSRGAN PULSE

PSNR 21.78 23.40 25.93 24.55 22.01

SSIM 0.51 0.63 0.74 0.66 0.55

taining image quality. This was the approach we used
to generate the images presented in this paper.

3. Appendix C: Alternative Metrics

For completeness, we provide the metrics of PSNR and
SSIM here. These results were obtained with ×8 scale fac-
tor from an input of resolution 16 × 16. Note that we ex-
plicitly do not aim to optimize on this pixel-wise average
distance from the high-resolution image, so these metrics
do not have meaningful implications for our work.

4. Appendix D: Robustness

Traditional supervised approaches using CNNs are noto-
riously sensitive to tiny changes in the input domain, as any
perturbations are propagated and amplified through the net-
work. This caused some problems when trying to train FS-
RNET and FSRGAN on FFHQ and then test them on Cele-
bAHQ. However, PULSE never feeds an LR image through
a convolutional network and never applies filters to the LR
input images. Instead, the LR image is only used as a term
in the downscaling loss. Because the generator is not capa-
ble of producing “noisy” images, it will seek an SR image
that downscales to the closest point on the LR natural image
manifold to the noisy LR input. This means that PULSE
outputs an SR image that downscales to the projection of
the noisy LR input onto the LR natural image manifold, and
if the noise is not too strong, this should be close to the
“true” unperturbed LR . This may explain why PULSE had



no problems when applied to different domains, and why
we could demonstrate robustness when the low resolution
image was degraded with various types of noise.
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Figure 3. (64x) Sample 1



Figure 4. (64x) Sample 2



Figure 5. (64x) Sample 3



Figure 6. (64x) Sample 4


