
Supplementary Material – Can We Learn Heuristics For Graphical Model

Inference Using Reinforcement Learning?

Safa Messaoud, Maghav Kumar, Alexander G. Schwing

University of Illinois at Urbana-Champaign

{messaou2, mkumar10, aschwing}@illinois.edu

Recall, given an image x, we are interested in predicting the semantic segmentation y = (y1, . . . , yN) ∈ Y by solving

the inference task defined by a Conditional Random Field (CRF) with nodes corresponding to superpixels. Hereby, N
denotes the total number of superpixels. The semantic segmentation of a superpixel i ∈ {1, . . . , N} is referred to via

yi ∈ L = {1, . . . , |L|}, which can be assigned one out of |L| possible discrete labels from the set of possible labels L. We

formulate the inference task as a Markov Decision Process that we study using two reinforcement learning algorithms: DQN

and MCTS. Specifically, an agent operates in t ∈ {1, . . . , N} time-steps according to a policy π(at|st) which encodes a

probability distribution over actions at ∈ At given the current state st. The current state subsumes the indices of all currently

labeled variables It ⊆ {1, . . . , N} as well as their labels yIt = (yi)i∈It , i.e., st ∈ {(It, yIt) : It ⊆ {1, . . . , N}, yIt ∈ L|It|}.
The policy selects one superpixel and its corresponding label at every time-step.

In this supplementary material we present:

1. Appendix A: Further training and implementation details

2. Appendix B: Further details on the policy network

• B 1: DQN

• B 2: MCTS

3. Appendix C: Additional Results

• C 1: Comparison of the reward schemes

• C 2: Visualization of the learned embeddings

• C 3: Learned policies

• C 4: Qualitative results

1

A: Further Training and Implementation Details

PSPNet, TrackR-CNN and and the hypercolumns from VGGNet are not fine-tuned. Only the graph policy net is trained.

For MOTS, we apply our model to every frames of the video. For MCTS, we set the number of simulations during exploration

to 50 and the simulation depth to 4. At test time, we run 20 simulations with a depth of 4. The models are trained for 10

epochs, equivalent to around 375, 000 training iterations for Pascal VOC and 188, 000 for MOTS. The parameters of the

energy function, αp, βp, wb, cb, λb and C, are obtained via a grid search on a subset of 500 nodes from the training data. The

number of iterations K of the graph neural network is set to 3. The dimension F of the node features bi equals 85 for Pascal

VOC and 30 for MOTS, consisting of the unary distribution, the unary distribution entropy, and features of the bounding

box. The bounding box features are the confidence and label of the bounding box, its unary composition at the pixel level,

percentage of overlap with other bounding boxes and their associated labels and confidence. The embedding dimension p is

32 for Pascal VOC and 16 for MOTS. As an optimizer, we use Adam with a learning rate of 0.001.

B: Further details on the policy network (DQN, MCTS)

B1: DQN

Both for DQN and MCTS, three different sets of actions are encouraged at training iteration t:

• M(t)
1 : Selecting nodes adjacent to the already chosen ones in the graph, at iteration t. Otherwise, the reward will only

be based on the unary terms as the pairwise term is only evaluated if the neighbors are labeled (t = 2 in Tab. 1 in the

main paper).

We assign a score M1(st, at) to every available action at = (it, yit) ∈ At to encourage the exploration of the set

M(t)
1 :

M1(st, at) =
|{j : (j /∈ It) and (it, j) ∈ E}|

|{j : (it, j) ∈ E}|
. (1)

• M(t)
2 : Selecting nodes with the lowest unary distribution entropy, at iteration t. A low entropy indicates a high

confidence of the unary deep net. Hence, the labels of the corresponding nodes are more likely to be correct and would

provide useful information to neighbors with higher entropy in the upcoming iterations. We assign a score M2(st, at)

to every available action at = (it, yit) ∈ At to encourage the exploration of the setM(t)
2 :

M2(st, at) =
exp (−Sit)

∑

j∈{1,...,N}\It
exp (−Sj)

. (2)

Here, Sit denotes the entropy of the unary distribution evaluated at node it.

• M(t)
3 : Assigning the same label to nodes forming the same higher order potential at iteration t, i.e.,

M3(st, at) =







1 if yit = argmax
k∈L

∑

{j:j∈It and (it,j)∈C}

✶{yj=k}

0 otherwise

. (3)

For DQN, at train time, the next action at is selected as follows:

a∗t =















































argmax
at∈At

Q(st, at; θ) with probability ǫ

argmax
at∈At

M1(st, at) with probability (1− ǫ)/4

argmax
at∈At

M2(st, at) with probability (1− ǫ)/4

argmax
at∈At

M3(st, at) with probability (1− ǫ)/4

Random with probability (1− ǫ)/4.

(4)

Here ǫ is a fixed probability modeling the exploration-exploitation tradeoff. At test time, a∗t = argmax
at∈At

Q(st, at; θ).

B2: MCTS

As described in Sec 3.5 of the main paper, for a given graph G(V, E , w), MCTS operates by constructing a tree, where

every node corresponds to a state s and every edge corresponds to an action a. The root node is initialized to s1 = ∅. Every

node stores three statistics: 1) N(s), the number of times state s has been reached, 2) N(a|s), the number of times action a
has been chosen in node s in all previous simulations, and 3) r̃(s, a), the averaged reward across all simulations starting at

state s and taking action a. A simulation involves three steps : 1) selection, 2) expansion and 3) value backup. After running

nsim simulations, an empirical distribution πMCTS(a|s) = N(a|s)
N(s) is computed for every node. The next action is then chosen

according to πMCTS. A policy network πθ(a|s) is trained to match a distribution πMCTS constructed through these simulations.

In the following, we provide more details about each of these steps.

Selection corresponds to choosing the next action given the current node st, based on four factors : 1) a variant of the

probabilistic upper confidence bound (PUCB) [2] given by U(st, at; θ) =
r̃(st,at)
N(at|st)

+ πθ(at|st)
√

N(st)

1+N(at|st)
, 2) M1(st, at) 3)

M2(st, at) and 4) M3(st, at) similarly to DQN in Appendix B1. Formally,

a∗t = argmax
at∈At











U(st, at; θ) +M1(st, at) with probability 1
3

U(st, at; θ) +M2(st, at) with probability 1
3

U(st, at; θ) +M3(st, at) with probability 1
3

. (5)

Expansion consists of constructing a child node for every possible action from the parent node st. The possible actions

include the nodes which have not been labeled. The child nodes’ cumulative rewards and counts are initialized to 0. Note

that selection and expansion are limited to a depth dsim starting from the root node in a simulation.

Value backup refers to back-propagating the reward from the current node on the path to the root of the sub-tree. The visit

counts of all the nodes in the path are incremented as well.

Final Labeling: Once nsim simulations are completed, we compute πMCTS for every node. The next action at from the

root node is decided according to πMCTS(at|st) : at ∼ πMCTS(at|st) at train time and at = argmaxat∈At
πMCTS(at|st) at

inference. The next node becomes the root of the sub-tree. The experience (st, π
MCTS) is stored in the replay buffer. The

whole process is repeated until all N nodes in the graph G are labeled. We summarize the MCTS training algorithm below in

Alg. 1. Note that we run 10 episodes per graph during training, but for simplicity we present the training for a single episode

per graph.

Algorithm 1: Monte Carlo Tree Search Training

input : Head node: s1, nsim: number of simulations, dsim : depth of simulations

output: A labeling y ∈ Y for all the nodes V

// Looping over the graphs from the dataset

1 for all G(V, E , w) do

// Initialization

2 s1 = ∅
3 r̃(si, a) = 0, ∀si, i ∈ {1, . . . , N}, ∀a

// Looping over graph nodes V
4 for t = 1 to N do

// Running simulations

5 for n = 1 to nsim do

// Create and expand a sub-tree

6 for j = t to t+ dsim do

7 Select aj according to Eq. (5) and advance temporary state in sub-tree

8 end

9 Backup rewards along the visited nodes in the simulations

10 Update node visit counts

11 end

12 Compute tree policy πMCTS with visit counts

13 Select the next action at ∼ πMCTS(at|st)
14 Update the root node st+1 ← st ⊕ at
15 Store (st, π

MCTS) in Replay Buffer

16 end

17 Sample M examples from Replay Buffer to update neural network parameters using Eq. (4) in the main paper

18 end

C: Additional Results

C1: Comparing Reward Schemes

Good Action

Reward

Pr
ob

ab
ilit

y

Bad Action

Good Action

Node

Logits

Class Labels
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Logits

Class Labels
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20

Bad

Action

Action

Reward

N

Node

Figure 1. Explanation of the low performance of the first reward scheme (rt = −Et + Et−1).

In Tab. 2 of the main paper, we observe that the second reward scheme (rt = ±1) generally outperforms the first one

(rt = −Et + Et−1). This is due to the fact that, the rewards for wrong actions, in this scheme, can be higher than the ones

for good actions. Specifically, in Fig. 1 we plot the distribution of the rewards of good actions (in blue) and the one of wrong

actions (in orange) for 50, 000 randomly chosen actions from the replay memory. To better illustrate the cause, we consider

the unary energy case and visualize the class distribution of two nodes i and j. If we label node i to be of class 0 (good

action), and node j to be of class 1 (wrong action), the resulting rewards are fi(0) for node i and fj(1) for node j. Note that

fi(0) < fj(1), since the distribution of the labels in case of node i is almost uniform, whereas the mass for node j is put on

the first two labels.

C2: Visualization of the learned embeddings

In Tab. 2 in the main paper, we observe that our model can produce better segmentations than the ones obtained by

just optimizing energies. Guided by the reward and due to network regularization, the policy net captures contextualized

embeddings of classes beyond energy minimization. Intuitively, a well calibrated energy function yields rewards that are well

correlated with F1-scores for segmentation. When TSNE-projecting the policy nets node embeddings for Pascal VOC data

into a 2D space, we observe that they cluster in 21 groups, as illustrated in Fig. 2.

20 10 0 10 20
30

20

10

0

10

20
aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
pottedplant
sheep
sofa
train

Figure 2. Visualization of the learned embeddings.

C3: Learned Policies

In Fig. 3, we visualize the learned greedy policy. Specifically, we show the probability map across consecutive time

steps. The probability maps are obtained by first computing an N dimensional score vector φ((i, ·)|st) =
∑

y∈L π((i, y)|st)
∀i ∈ {1, . . . , N} by summing over all the label scores per node and then normalizing φ((i, ·)|st) to a probability distribution

over the non selected superpixels i ∈ {1, . . . , N} \ It. The selected nodes are colored in white. The darker the superpixel,

the smaller the probability of selecting it next. We found that the heuristic learns a notion of smoothness, selecting nodes that

are in close proximity and of the same label as the selected ones. Also, the policy learns to start labeling the nodes with low

unary distribution entropy, then decides on the ones with higher entropy.

Figure 3. Visualization of our learned policy.

C4: Additional qualitative results

In the following, we present additional qualitative results. In Fig. 4 and Fig. 5, we present the segmentation results of

our policy on examples from the Pascal VOC and the MOTS datasets respectively. The pairwise potential, together with

the superpixel segmentation helped reduce inconsistencies in the unaries obtained from PSPNet/TrackR-CNN across all the

examples. HOP1 resulted in better learning the boundaries of the objects. The energy which includes the HOP2 potential

provides the best results across all energies as it helped better segment overlapping objects.

We include additional results comparing PSPNet/TrackR-CNN, DQN and MCTS outputs for the energy function with

unary, pairwise, HOP1 and HOP2 potentials in Fig. 6 and Fig. 7. The policies trained with DQN/MCTS improve over the

PSPNet/TrackR-CNN results across almost all our experiments. Additional failure cases are presented in Fig. 8 and Fig. 9.

potted Plant

person

person

motorbike

areophane

Image SLIC GT PSPNet Unaries (sp) Pairwise -DQN- HOP1 -DQN- HOP2 –DQN- Pairwise -MCTS- HOP1 -MCTS- HOP2 -MCTS- Pairwise -BP- HOP1 -BP-

bottel

dog

chair

person

person

motorbike

motorbike

Figure 4. Output of our method for different potentials for Pascal VOC.

personperson

bicycle

Image SLIC GT TrackR-CNN Unaries -BP- Pairwise -BP- HOP1 -BP-

Pairwise -MCTS- HOP1-MCTS- HOP2 -MCTS-

Pairwise -DQN- HOP1 -DQN- HOP2 -DQN-

Image SLIC GT TrackR-CNN Unaries -DQN- Pairwise -BP- HOP1 -BP-

car

Pairwise -DQN- HOP1 -DQN- HOP2 -DQN-

Pairwise -MCTS- HOP1-MCTS- HOP2 -MCTS-

Figure 5. Output of our method for different potentials for MOTS.

2
5

0
 N

o
d

e
s

Image SLIC GT PSPNet DQN MCTS Image SLIC GT PSPNet DQN MCTS

person
person person

person

person

person

chair

dog

train

person

dog

person

dining table

horse

person

dog

dog

person

cow

cow

person
sofa

cat

dog

Figure 6. Additional success cases on Pascal VOC.

personperson

bicycle

Image SLIC GT TrackR-CNN DQN MCTS

car car

bicycle

Figure 7. Additional success cases on MOTS.

cat

person

horse

Image SLIC PSPNet DQN MCTS Image SLIC PSPNet DQN MCTS

Figure 8. Additional failure cases on Pascal VOC.

car

person

train

Image SLIC GT TrackR-CNN DQN MCTS

Figure 9. Additional failure cases on MOTS.

References

[1] C. D. Rosin. Multi-armed bandits with episode context. Annals of Mathematics and Artificial Intelligence, 61(3):203–230, 2011.

[2] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap,

K. Simonyan, and D. Hassabis. Mastering chess and shogi by self-play with a general reinforcement learning algorithm, 2017. 3

[3] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al. Mastering

the game of go without human knowledge. Nature, 550(7676):354, 2017.

