
SSRNet: Scalable 3D Surface Reconstruction Network

Zhenxing Mi † Yiming Luo † Wenbing Tao ∗

National Key Laboratory of Science and Technology on Multi-spectral Information Processing
School of Artifical Intelligence and Automation, Huazhong University of Science and Technology, China

{m201772503, yiming luo, wenbingtao}@hust.edu.cn

1. Data Preparation
Our SSRNet is trained in a supervised fashion. The in-

put training data include points and labeled vertices from
the finest-level of an octree. We propose a method to label
octree vertices with respect to a ground-truth surface. This
method takes a point cloud and a ground-truth surface with
surface normals as input. It first normalizes the coordinates
of the points and surfaces according to the bounding box.
Then an octree is built from the point cloud. The octree
building method is adapted from the open-source code of
Poisson Surface Reconstruction (PSR) [1]. It makes sure
that the finest level of the result octree contains not only
cubes with points in them, but also their 3× 3× 3 neighbor
cubes. Therefore, the octree is dense enough to completely
contain the implicit surface. In the meantime, the vertices
of the finest-level octree cubes are guaranteed to be close to
the surface, which makes front-back labeling feasible.

In order to label finest-level octree vertices, we compute
the intersections of octree edges and surface triangles. Since
octree edges are all aligned with axes, we adapt an efficient
method in [3]. Figure 1 shows a 2D example of our method
for the sake of simplicity. The method consists of three
steps.
Step 1: We first find the intersections of surface trian-
gles and the grid lines of the octree. It is accomplished
by projecting each triangle in the input surface to the
XY, Y Z,ZX planes. Since we propose an example in 2D,
in Figure 1, the segment t represents a triangle in 3D space
and the axis ox represents a coordinate plane in 3D space.
As the Figure 1 (a) shows, after projection, we are able to
detect that the two grid lines l1 and l2 intersect t.
Step 2: After detecting the intersections of grid lines and
triangles, we are able to determine whether an octree edge
intersects a triangles because each octree edge lies on a grid
line. As the Figure 1 (b) shows, the two edges e1 and e2
intersects a triangle t. we label the two vertices of an inter-
sected edge according to the triangle normal direction nt.

†Equal contribution
∗Corresponding author

𝑦

𝑂 𝑥

𝑙1 𝑙2

𝑡

𝑒1

𝑒2

𝑛𝑡

𝑦

𝑂 𝑥

𝑙1 𝑙2

𝑡 𝑒2

𝑛𝑡

𝑎 𝑏

Figure 1. Example of our method for training data generation. (a)
and (b) are 2D examples.

Let nv be the vector from the intersection to the vertex v.
In our front-back definition, if the angle between nv and nt

is larger than 90◦, the vertex v is labeled as at back of the
surface. Otherwise, it is labeled as in front of the surface.
That is,

labelv =

 0 if n>v nt ≤ 0

1 if n>v nt > 0
(1)

In our computation, one edge may have multiple inter-
sections with the surface and one vertex may belong to
edges of different directions. Therefore, conflicts may occur
on the label of one vertex. However, these situations rarely
happen at a high resolution octree in practice. If these hap-
pen, we just choose one of the multiple labels.
Step 3: After Step 2, part of vertices near the surface are
labeled. These vertices divide the region into two parts and
serves as a decision boundary of front and back. In order to
label other vertices, we just search their nearest neighbors
in the labeled vertices. Then we give them the same label
as the neighbors.

Our method for training data generation introduced
above is for general purpose. In practice, we are lack
of public available ground-truth surfaces for large-scale

datasets, so we use surfaces reconstructed by PSR to gen-
erate training data. If we have ground truth surfaces for
large-scale datasets in the future, we can get more accurate
training data directly from these surfaces using our training
data generation method.

2. Surfaces on ShapeNet
We report more figures of the result surfaces recon-

structed by our method on ShapeNet at octree depth 8. Fig-
ure 2, 3, 4, 5, 6, 7, 8 shows the reconstructed surfaces of our
SSRNet and ONet [2].

3. Surfaces on DTU Testing Scans
We report more figures of the result surfaces recon-

structed by our method on testing scans in DTU dataset at
octree depth 9. Table 1, 2, 3, 4, 5, 6 show the detailed eval-
uation time. Figure 9, 10, 11, 12, 13, 14, 15 show the re-
constructed surfaces of our SSRNet and PSR [1]. Surfaces
reconstructed by PSR for comparison are reconstructed at
octree depth 9 and trimmed at value 8 and 9.5.

References
[1] Michael Kazhdan and Hugues Hoppe. Screened poisson sur-

face reconstruction. ACM Transactions on Graphics (ToG),
32(3):29, 2013. 1, 2

[2] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebas-
tian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4460–4470, 2019. 2

[3] Claudio Rocchini, Paolo Cignoni, Fabio Ganovelli, Claudio
Montani, Paolo Pingi, and Roberto Scopigno. Marching inter-
sections: an efficient resampling algorithm for surface man-
agement. In Proceedings International Conference on Shape
Modeling and Applications, pages 296–305. IEEE, 2001. 1

Table 1. The time performance of our method. We report the first scale point number, first scale octree vertex number and triangle number
in our results using million (M) as unit. The preprocessing time (Prep. time) includes octree construction time, downsampling time, tangent
images precomputing time and batches computing time. The prediction time (Pred. time) is the time to load partitioned points and vertices
and to predict labels of vertices using network.

Number stl001 stl002 stl003 stl004 stl005 stl006 stl007 stl008

Point /M 2.40 2.04 2.81 1.81 2.81 2.02 1.74 2.07
Vertex /M 0.958 0.753 1.64 0.883 1.24 0.829 0.855 0.978
Triangle /M 0.365 0.292 0.634 0.367 0.509 0.340 0.337 0.372
Batch 109 72 129 101 145 115 72 71

Time/s stl001 stl002 stl003 stl004 stl005 stl006 stl007 stl008

Prep 25.466 20.491 34.875 20.555 33.021 22.844 19.361 22.201
Pred(1 GPU) 111.615 80.36 161.186 108.138 157.469 117.156 81.564 80.853
Pred(4 GPUs) 50.489 39.447 69.143 48.186 70.755 45.106 38.433 43.475

Total (1 GPU) 137.776 101.535 196.758 129.369 191.205 140.641 101.535 103.713
Total (4 GPUs) 76.650 60.622 104.715 69.417 104.491 68.591 58.404 66.335

Table 2. The time performance of our method. We report the first scale point number, first scale octree vertex number and triangle number
in our results using million (M) as unit. The preprocessing time (Prep. time) includes octree construction time, downsampling time, tangent
images precomputing time and batches computing time. The prediction time (Pred. time) is the time to load partitioned points and vertices
and to predict labels of vertices using network.

Number stl009 stl010 stl011 stl012 stl013 stl014 stl015 stl016

Point /M 2.35 2.04 2.22 1.29 2.61 2.94 2.55 3.02
Vertex /M 1.02 0.947 0.998 0.911 1.10 1.28 1.06 1.79
Triangle /M 0.444 0.368 0.440 0.361 0.431 0.564 0.469 0.775
Batch 97 82 94 39 86 144 132 96

Time/s stl009 stl010 stl011 stl012 stl013 stl014 stl015 stl016

Prep 25.383 22.277 24.248 15.071 27.347 33.52 28.401 35.984
Pred(1 GPU) 113.115 90.115 114.557 51.906 101.602 164.933 141.376 131.807
Pred(4 GPUs) 52.864 43.256 63.047 28.020 49.640 69.795 60.871 57.434

Total (1 GPU) 139.253 113.163 139.432 67.675 129.59 199.169 170.491 168.566
Total (4 GPUs) 79.002 66.304 87.922 43.789 77.628 104.031 89.986 94.193

Table 3. The time performance of our method. We report the first scale point number, first scale octree vertex number and triangle number
in our results using million (M) as unit. The preprocessing time (Prep. time) includes octree construction time, downsampling time, tangent
images precomputing time and batches computing time. The prediction time (Pred. time) is the time to load partitioned points and vertices
and to predict labels of vertices using network.

Number stl018 stl019 stl020 stl021 stl024 stl029 stl035 stl038

Point /M 2.25 2.51 2.05 2.67 2.45 2.88 2.23 1.89
Vertex /M 1.08 1.17 0.993 1.31 0.877 1.14 0.901 0.787
Triangle /M 0.478 0.496 0.421 0.608 0.353 0.477 0.356 0.320
Batch 81 104 93 122 129 137 99 80

Time/s stl018 stl019 stl020 stl021 stl024 stl029 stl035 stl038

Prep 24.767 28.693 22.966 30.732 26.443 31.451 24.234 20.607
Pred(1 GPU) 95.375 117.374 98.553 134.578 134.27 143.643 24.234 20.607
Pred(4 GPUs) 46.279 54.376 46.524 63.499 59.591 63.400 45.740 39.425

Total (1 GPU) 120.839 146.781 122.175 166.026 161.356 175.89 133.429 102.232
Total (4 GPUs) 71.743 83.783 70.146 94.947 86.677 95.647 70.671 60.765

Table 4. The time performance of our method. We report the first scale point number, first scale octree vertex number and triangle number
in our results using million (M) as unit. The preprocessing time (Prep. time) includes octree construction time, downsampling time, tangent
images precomputing time and batches computing time. The prediction time (Pred. time) is the time to load partitioned points and vertices
and to predict labels of vertices using network.

Number stl041 stl042 stl045 stl046 stl048 stl051 stl055 stl059

Point /M 1.70 1.97 1.81 2.17 1.88 1.75 2.72 2.11
Vertex /M 0.732 0.940 0.710 0.749 0.927 0.806 1.54 0.813
Triangle /M 0.287 0.374 0.293 0.322 0.368 0.314 0.612 0.328
Batch 57 65 75 105 58 58 93 72

Time/s stl041 stl042 stl045 stl046 stl048 stl051 stl055 stl059

Prep 17.328 21.279 19.268 22.523 19.89 18.781 31.513 21.433
Pred(1 GPU) 17.328 21.279 19.268 22.523 19.890 18.781 31.513 21.433
Pred(4 GPUs) 32.284 40.075 38.097 51.272 33.651 33.520 56.488 40.812

Total (1 GPU) 78.452 96.718 102.634 136.631 91.202 89.168 149.613 109.549
Total (4 GPUs) 50.233 62.052 58.124 74.417 54.209 52.979 88.667 62.978

Table 5. The time performance of our method. We report the first scale point number, first scale octree vertex number and triangle number
in our results using million (M) as unit. The preprocessing time (Prep. time) includes octree construction time, downsampling time, tangent
images precomputing time and batches computing time. The prediction time (Pred. time) is the time to load partitioned points and vertices
and to predict labels of vertices using network.

Number stl060 stl061 stl063 stl065 stl069 stl084 stl093 stl094

Point /M 2.63 1.96 2.13 2.86 2.67 2.30 2.79 2.55
Vertex /M 1.13 0.794 0.886 1.67 1.41 1.06 1.14 1.02
Triangle /M 0.463 0.328 0.349 0.704 0.556 0.435 0.450 0.402
Batch 85 95 59 82 119 94 97 110

Time/s stl060 stl061 stl063 stl065 stl069 stl084 stl093 stl094

Prep 27.597 21.052 21.553 33.728 31.514 25.254 29.804 26.563
Pred(1 GPU) 100.657 99.334 76.773 111.888 131.461 112.381 111.470 120.886
Pred(4 GPUs) 47.912 47.116 45.776 52.662 66.661 51.706 52.863 55.888

Total (1 GPU) 128.887 121.125 99.081 146.356 163.741 138.407 141.946 148.248
Total (4 GPUs) 76.142 68.907 68.084 87.130 98.941 77.732 83.339 83.250

Table 6. The time performance of our method. We report the first scale point number, first scale octree vertex number and triangle number
in our results using million (M) as unit. The preprocessing time (Prep. time) includes octree construction time, downsampling time, tangent
images precomputing time and batches computing time. The prediction time (Pred. time) is the time to load partitioned points and vertices
and to predict labels of vertices using network.

Number stl095 stl097 stl106 stl110 stl114 stl122 stl126 stl127

Point /M 2.75 2.60 3.34 2.12 2.96 2.60 4.05 4.21
Vertex /M 1.30 1.04 1.92 1.30 1.55 1.70 2.13 1.54
Triangle /M 0.517 0.424 0.775 0.513 0.588 0.702 0.836 0.601
Batch 98 92 116 69 135 114 118 133

Time/s stl095 stl097 stl106 stl110 stl114 stl122 stl126 stl127

Prep 30.263 27.236 38.975 25.435 35.499 32.512 47.193 42.994
Pred(1 GPU) 122.669 109.600 145.663 91.904 168.743 147.693 169.057 168.511
Pred(4 GPUs) 53.797 52.231 68.101 58.003 67.392 61.119 85.317 75.161

Total (1 GPU) 153.57 137.594 185.458 117.974 205.004 180.949 217.141 212.206
Total (4 GPUs) 84.698 80.225 107.896 84.073 103.653 94.375 133.401 118.856

Ground Truth Model ONet Ours

Airplane

Bench

Figure 2. Reconstructed surfaces of our network and ONet on ShapeNet testing set.

Ground Truth Model ONet Ours

Rifle

Car

Figure 3. Reconstructed surfaces of our network and ONet on ShapeNet testing set.

Ground Truth Model ONet Ours

Sofa

Table

Figure 4. Reconstructed surfaces of our network and ONet on ShapeNet testing set.

Display

Vessel

Ground Truth Model ONet Ours

Figure 5. Reconstructed surfaces of our network and ONet on ShapeNet testing set.

Chair

Ground Truth Model ONet Ours

Telephone

Figure 6. Reconstructed surfaces of our network and ONet on ShapeNet testing set.

Cabinet

Loud Speaker

Ground Truth Model ONet Ours

Figure 7. Reconstructed surfaces of our network and ONet on ShapeNet testing set.

Lamp

Ground Truth Model ONet Ours

Figure 8. Reconstructed surfaces of our network and ONet on ShapeNet testing set.

DTU Points PSR (trim 8) OursPSR (trim 9.5)

stl_010

stl_011

stl_012

stl_013

stl_014

stl_015

Figure 9. Reconstructed surfaces of our network and PSR on DTU testing scenes.

DTU Points PSR (trim 8) OursPSR (trim 9.5)

stl_016

stl_018

stl_019

stl_021

stl_024

stl_029

Figure 10. Reconstructed surfaces of our network and PSR on DTU testing scenes.

DTU Points PSR (trim 8) OursPSR (trim 9.5)

stl_030

stl_034

stl_035

stl_038

stl_041

stl_042

Figure 11. Reconstructed surfaces of our network and PSR on DTU testing scenes.

DTU Points PSR (trim 8) OursPSR (trim 9.5)

stl_045

stl_046

stl_048

stl_051

stl_055

stl_059

Figure 12. Reconstructed surfaces of our network and PSR on DTU testing scenes.

DTU Points PSR (trim 8) OursPSR (trim 9.5)

stl_060

stl_061

stl_062

stl_063

stl_065

stl_069

Figure 13. Reconstructed surfaces of our network and PSR on DTU testing scenes.

DTU Points PSR (trim 8) OursPSR (trim 9.5)

stl_084

stl_093

stl_094

stl_095

stl_097

stl_106

Figure 14. Reconstructed surfaces of our network and PSR on DTU testing scenes.

DTU Points PSR (trim 8) OursPSR (trim 9.5)

stl_110

stl_114

stl_122

stl_126

stl_127

stl_128

Figure 15. Reconstructed surfaces of our network and PSR on DTU testing scenes.

