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A. Overview
In this supplementary material, we provide details that

are not shown in the main paper. We first present the details
of the proposed network architectures in Sec. B (main paper
Sec. 3.3) and pre-processing details in Sec. C (Sec. 4.2).
Then we discuss the inference speed with different point
cloud scales in Sec. D (Sec. 4.2). At last, we analyze some
failure cases and show the confusion matrices of baseline
and proposed methods in Sec. E (Sec. 4.2 & 4.3).

B. Details on Baseline Architectures (Sec. 3.4)
This model is a modified version of FlickerNet [2]. To

evaluate the effects of the PointLSTM, we divided the net-
work into five stages: the first stage extracts intra-frame fea-
tures using spatial grouping, and the second to fourth stages
extract inter-frame features by spatio-temporal grouping.
The fifth stage is to gather information from all timesteps.
Table 1 shows the entire network structure.

At each inter-frame stage, point-wise shared fully con-
nected, batch normalization, and ReLU layers are adopted
to update each point’s feature vector and get position em-
bedding. Then the two branch features are added together
and propagated to the next stage with the original coordi-
nates.

C. Details on Data Pre-Processing (Sec. 4.1)
The original NVGesture, SHREC’17, and MSR Action

3D datasets do not provide point cloud sequences. How-
ever, most gesture data are collected by short-range depth
cameras. The sizes of hand region in the video change along
with the distance between hand and camera, which will
make the recognition system confused. Therefore, we trans-
form the pixels of depth videos from the image coordinate
system to the world coordinate system. Let (xi,2D, yi,2D)
, (xi,3D, yi,3D, zi,3D) be the location of point i in the im-

Table 1. More details about the baseline architecture. The first
stage extracts intra-frame features using general grouping, and the
second to fourth stages are inter-frame features. Point-wise shared
Conv1x1 (1×1 Convolution-BN-ReLU) is used at each stage.

Layer Output Size

Stage 1

Grouping ( 32, 4, 128, 16)
Conv1x1 ( 32, 32, 128, 16)
Conv1x1 ( 32, 64, 128, 16)

Max-pooling ( 32, 64, 128, 1)

Stage 2

STGrouping ( 32, 132, 128, 24)
STSampling ( 32, 132, 64, 24)

Position Embedding ( 32, 128, 64, 24)
Conv1x1 ( 32, 128, 64, 24)

Add ( 32, 128, 64, 24)
Max-pooling ( 32, 128, 64, 1)

Stage 3

STGrouping ( 32, 260, 64, 48)
STSampling ( 32, 260, 32, 48)

Position Embedding ( 32, 256, 32, 48)
Conv1x1 ( 32, 256, 32, 48)

Add ( 32, 256, 32, 48)
Max-pooling ( 32, 256, 32, 1)

Stage 4

STGrouping ( 32, 516, 32, 12)
STSampling ( 32, 516, 8, 12)

Position Embedding ( 32, 512, 8, 12)
Conv1x1 ( 32, 512, 8, 12)

Add ( 32, 512, 8, 12)
Max-pooling ( 32, 512, 8, 1)

Stage 5 Conv1x1 ( 32, 1024, 8, 1)
Max-pooling 1024

Classifier FC classes

age and the world coordinate system, the inverse perspec-



tive transformation can be represented by

xi,3D =
xi,2D − cx

fx
I(xi,2D,yi,2D)

yi,3D =
yi,2D − cy

fy
I(xi,2D,yi,2D)

zi,3D = I(xi,2D,yi,2D)

(1)

where (fx, fy, cx, cy) are intrinsic parameter of a depth
camera. We use the default values of each depth de-
vice: (224.502, 230.494, 160.000, 120.000) for SoftKinetic
DS325 and (463.889, 463.889, 320.000, 240.000) for Re-
alSense SR300.
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Figure 1. Examples of point sampling process on two Datasets (a)
NVGesture, (b) SHREC’17. Each row contains an original depth
map (left), a sampled point cloud (middle), and a transformed
point cloud (right).

Moreover, the Z values of the background are almost
zeros. In order to reduce the unnecessary computation for
background points, we use the bounding boxes [1] provided
in SHREC’17, and use the Otsu [3] threshold to remove
the background for the other two datasets and then sample
points from hand regions. Fig. 1 shows the point-sampling
process.

D. Details on Inference Time (Sec. 4.2)

Sec. 4.2 has introduced the model size and inference
time of different architectural designs. Here we show the in-
ference speed of the model with different point cloud scales
in Table 2. For this evaluation, we sample 32 frames and
keep the same number of points for each frame by #points.

Table 2. Inference time of PointLSTM and baseline with different
point cloud scales and batch sizes.

#Points 32 32 64 64 128 128 256
Batch size 1 8 1 4 1 2 1
PointLSTM (ms) 24 54 28 53 34 56 60
Baseline (ms) 10 38 13 38 22 39 41

Figure 2. Examples of NVGesture Dataset. Gestures from top to
down are “Move hand down”, “Push hand down”, “Pull hand in”
and “Call someone”. Each pair has similar postures and motion
trajectories with small differences.

The inference time is measured on a single Tesla P100 GPU
with Pytorch [4].

E. Details on Result Analysis (Sec. 4.2 & 4.3)

Confusion matrix comparison on NVGesture dataset for
baseline and PointLSTM are shown in Fig. 4. We can find
that PointLSTM can clearly distinguish gestures with simi-
lar postures yet different motion directions, such as “Move
hand up” and ”Move hand down”. However, some ges-
ture samples are very similar and hard to distinguish. As
shown in Fig. 2, both “Move hand down” and “Push hand
down” have similar postures and motion trajectories with
only small hand orientation differences. Besides, many
noisy postures and motions are also occur in videos: ”Move
hand up” gesture is shown in the preparation stage of both
“Move hand down” and “Push hand down” gestures, and
”Thumb up” gesture is shown in the “Pull hand in” gesture.
Therefore, the quality of gesture localization is one of the
essential factors to further improve the recognition results.

PointLSTM-middle with direct grouping shows better
results than aligned grouping on SHREC’17. Thus we an-
alyze failure cases and visualize several typical examples
in Fig. 3. Examples show PointLSTM with aligned group-
ing operation tends to predict motion-relevant gestures. We
believe this is mainly because such roughly alignment will
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Figure 3. Several failure cases of PointLSTM-middle with aligned grouping on SHREC’17, which is more sensitive to the displacements.

enhance the motion cues and weaken the spatial correlation
of hand shapes, especially when the gesture is performed
with noisy motion. Inaccurate detections also lead to un-
stable alignment, as shown in the last row of Fig. 3. Thus,
we believe a more accurate alignment method can further
improve the recognition performance.

Confusion matrix comparison on SHREC’17 for base-
line and PointLSTM is shown in Fig. 5. Most of the classes
that required long-range dependencies achieve higher ac-
curacy than 90%, such as “Swipe” and “Rotation” rele-
vant classes, and show significant improvements compared
with baseline. We can see from Fig. 5(a) that the baseline
method is hard to distinguish between “Swipe Down” and
“Tap” due to the lack of long-term information. PointL-
STM (Fig. 5(b)) can better recognize these two classess, and
improve the discriminative power of both short-range and
long-range gestures. We can draw the same conclusion from
the Confusion Matrices on MSR Action3D dataset shown in
Fig. 6.
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Figure 4. Confusion matrix comparison on NVGesture dataset.
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Figure 5. Confusion matrix comparison on SHREC’17 dataset.
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Figure 6. Confusion matrix comparison on MSR Action3D dataset.


