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Abstract

These are the supplementary materials to the paper:
“Learning Weighted Riemannian Submanifolds with Vari-
ational Autoencoders and Riemannian Variational Autoen-
coders”.

Section 1 provides elements of Riemannian geometry.
Section 2 presents the proof of Proposition 2. Section 3
highlights the difference between a Riemannian VAE and
a VAE trained on the tangent space on the input manifold.
Section 4 provides the computations for the theoretical 1D
example of the paper. Sections 5 and 6 provide details on the
experiments on synthetic data and real brain connectomes.

1. Elements of Riemannian Geometry

1.1. (Sub)manifolds, Weighted (Sub)manifolds

We review some elements of Riemannian geometry. In
the main paper, these elements enable to introduce the Rie-
mannian variational autoencoder (rVAE) and its goodness
of fit in terms of weighted submanifold learning. We refer
to [4, 3] for details on differential geometry.

Definition 1 (Riemannian manifold) A Riemannian man-
ifoldM is a differentiable manifoldM equipped with a Rie-
mannian metric g, which is a smoothly varying inner prod-
uct on the tangent spaces of M .

We assume the Riemannian manifolds considered are
simply connected and complete [4]. As the objective of the
rVAE is submanifold learning, we recall the definition of a
submanifold.

Definition 2 (Submanifold and embedded submanifold)
A subset N of M is a submanifold of M if it is included
in M and is a manifold. The submanifold N of M is
called an embedded submanifold of M if there exists a
smooth manifold X and a smooth embedding f such that:
N = f(X).

The submanifold N inherits differential and geometric
structure fromM . In particular, the Riemannian inner prod-
uct from M restricts to tangent spaces TxN for x ∈ N to
give a Riemannian metric on N .

The Riemannian metric g of M induces an infinitesimal
volume element on each tangent space. Thus, a measure on
the manifold M has the expression dM =

√
det(g(x))dx

in a local coordinate system x. As the submanifold N can
be equipped with the Riemannian metric inherited from M ,
we can define a Riemannian measure on it similarly. Once
a measure is defined, we can introduce weighted manifolds
and submanifolds.

Definition 3 (Weighted (sub)manifold) Given a complete
d-dimensional Riemannian manifold (M, g) and a smooth
probability distribution ω : M → R, the weighted manifold
(M,ω) associated to M and ω is defined as the triplet:

(M, g, ω.dM), (1)

where dM denotes the Riemannian measure of M .

1.2. Geodesics and Geodesic Subspaces

Consider a Riemannian manifold M . We introduce ele-
ments of differential geometry required to perform compu-
tations in the generative model of the rVAE.

Let u, v be vector fields onM . The Riemannian metric g
on M induces the notion of covariant derivative, when con-
sidering the Levi-Civita connection associated with g [4].
Intuitively, the covariant derivative of v in the direction of
u, written ∇uv, represents the change of the vector field v
in the u direction.

Let γ be a curve onM parameterized by t, as γ : [0, 1] 7→
M, t 7→ γ(t). Its velocity is: γ̇ = dγ

dt . Let u be a vector
field t 7→ u(t) defined along γ. We can define the covariant
derivative of u along γ to be du

dt = ∇γ̇u.

Definition 4 (Riemannian geodesic) The curve
γ : [0, 1] 7→ M is called a geodesic if it satisfies the
equation ∇γ̇ γ̇ = 0, where ∇ represents the covariant
derivative of the Levi-Civita connection associated to the
Riemannian metric of M .
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Intuitively, a geodesic is a curve that is parallel to itself.
In this sense, a geodesic generalizes the notion of linear
curve on Euclidean spaces. As an example, geodesics on
the sphere are the great circles.

Geodesics are the equivalent on Riemannian manifolds
of 1D linear subspaces in Euclidean spaces. We define
“geodesic subspaces”, that generalize to manifolds higher-
dimensional subspaces of Euclidean spaces [1].

Definition 5 (Submanifold geodesic at a point) A sub-
manifold N of M is said to be geodesic at x ∈ N if all
geodesics of N passing through x are also geodesics of M .

1.3. Riemannian Exp and Log Maps

For any point x ∈ M and tangent vector at this point
u ∈ TxM , there exits a unique geodesic γ, with initial con-
ditions γ(0) = x and γ̇(0) = u. In general, the existence
of the geodesic is only guaranteed locally around 0. As we
assume the completeness of the manifold M , the geodesics
are defined on R.

Definition 6 (Riemannian exp map) Let γ be the unique
geodesic γ, with initial conditions γ(0) = x and γ̇(0) = u.
We define the Riemannian exponential map at x as:

Expx(u) = γ(1). (2)

The exponential map takes a point x and tangent vector u
and returns the point at time 1 obtained by “shooting” with
u along the geodesic. The exponential map is a local diffeo-
morphism onto a neighbourhood of x in M [4]. Let V (x)
be the largest neighbourhood on which the exponential map
at x is a diffeomorphism. We can define its inverse on V (x).

Definition 7 (Riemannian log map) The Riemannian ex-
ponential map has an inverse on the domain V (x), defined
as the Riemannian log map at x, and denoted Logx.

The domain V (x) is the global bijectivity domain of the
exponential map at x. One can show that V (x) is a star-
shaped domain delimited by a continuous curve Cx.

Definition 8 (Tangential cut locus and cut locus) The
curve Cx delimiting V (x) is called the tangential cut-locus
of x. The image of image by the exponential map at x is
called the cutlocus of x.

We can define the distance from a point x to its cut locus
C = Cx.

Definition 9 (Injectivity radius) For each x ∈ M , the in-
jectivity radius of M at x is defined as:

injx(M)

= sup {r : Expx is injective on Br(0) ⊂ TxM} ,

and the injectivity radius of M is defined as:

inj(M) = infx∈M injx(M). (3)

IfM is compact, then 0 < inj(M) ≤ diam(M). But in the
general case, we may have inj(M) = 0 or inj(M) = +∞.

1.4. Hadamard Manifolds

There is a class of manifolds, called Hadamard mani-
folds, for which the Riemannian exp map is a global diffeo-
morphism. Mathematically speaking, Hadamard manifolds
are complete Riemannian manifolds with non-positive sec-
tional curvature [4].

Theorem 1 (Cartan-Hadamard theorem) For simply-
connected Hadamard manifolds, the exponential map is a
global diffeomorphism from TxM onto V (x) = M . As a
consequence, the log map is defined on M for any point
x ∈M .

On Hadamard manifolds, the exponential map to trans-
form the manifold into a vector space.

1.5. Distance in M and between submanifolds of M

We define the notion of distance between points on the
manifold M and introduce the associated notion of distance
between weighted submanifolds of M .

Definition 10 (Riemannian distance) For any point y ∈
V (x), the Riemannian distance function is given by
dM (x, y) = ||Logx(y)||g(x) using the norm corresponding
to the inner product g(x) at x.

We recall the notion of Wasserstein distance between
probability distributions.

Definition 11 (Wasserstein distance) The 2-Wasserstein
distance, between probability measures µ and ν defined on
M , is defined as:

d2(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
M×M

dM (x1, x2)2dγ(z1, z2)

)1/2

(4)
where Γ(µ, ν) denotes the collection of all measures on
M × M with marginals µ and ν on the first and second
factors respectively.

This notion allows defining a notion of distance between
two embedded submanifolds of M , with Riemannian met-
ric associated with their embedding f . We consider the 2-
Wasserstein distance associated with the corresponding dis-
tributions, interpreted as singular distribution in M . This
notion of distance is the evaluation metric used to compare
weighted submanifold learning techniques.



1.6. Fréchet Mean

Definition 12 (Fréchet mean) ConsiderX a random vari-
able with values on M and probability distribution p on M .
The population Fréchet mean is defined as:

µ = argminy∈M

∫
M

d2
M (x, y)dp(x). (5)

Consider a random sample X1, ..., Xn on M . The sample
Fréchet mean is defined as:

x̄ = argminy∈M
1

n

n∑
i=1

d2
M (y, xi). (6)

1.7. Examples of Riemannian manifolds

The hypersphere and the hyperbolic plane are examples
of Riemannian manifolds. The n-dimensional hypersphere
Sn is defined by its embedding in the (n + 1)-Euclidean
space as:

Sn =
{
x ∈ Rn+1 : x2

1 + ...+ x2
n+1 = 1

}
(7)

while the n-dimensional hyperbolic space Hn is defined by
its embedding in the (n+1)-dimensional Minkowski space,
as:

Hn =
{
x ∈ Rn+1 : −x2

1 + ...+ x2
n+1 = −1

}
. (8)

Both are Riemannian manifolds of constant curvature,
which is positive for Sn and negative for Hn [4].

2. Proof of Proposition 1

We begin by introducing notations. For T ∈ R∗+, we
denote µT the standard multivariate normal in RL truncated
at a distance T from the origin. We writeBT the closed ball
of RL of radius T , which is a compact subset of RL as it is
bounded and closed in RL.

We write C(RL,RD) the set of continuous functions
from RL to RD, and we write C(BT ,RD) the set of contin-
uous functions from BT to RD.

2.1. Preliminaries

We first introduce a lemma that generalizes a result from
[2] to functions in D dimensions.

Lemma 1 Consider K a compact subsect of RL. For any
ε > 0 and any continuous function f ∈ C(K,RD), there
exists a neural network represented by the function fθ, pa-
rameterized by θ such that:

sup
z∈K
||f(z)− fθ(z)||22 < Dε. (9)

Proof 1 Take ε < 0. Take d ∈ [1, ..D] and consider fd
the d-th component of f ∈ C(K,RD). We have: fd ∈
C(K,R). We use the results from [2] to show that there
exists a neural network that approximates fd with precision
ε.

In our notations, L is the dimension of the input space
(as opposed to k in [2]), z is an element of the input space
RL (as opposed to x in [2]), and K is the number of units
in the hidden layer (as opposed to n in [2]). We define:

M
(K)
L (ψ) =

{
h : RL 7→ R|h(z) =

K∑
k=1

βkψ(a′kz − θk)

}
,

(10)
the space of functions represented by a fully connected neu-
ral network with one output unit and one hidden layer with
n hidden units, and:

ML(ψ) =

+∞⋃
K=1

M
(K)
L (ψ), (11)

the space of functions represented by a fully connected neu-
ral network with one output unit and any number of hidden
units. The ψ represents the common activation function of
all units. We assume that ψ is continuous, bounded, and
nonconstant, for example, the sigmoid activation function.

From Theorem 2 from [2], ML(ψ) is dense in C(K,R).
As fd ∈ C(K,R), there exists a function hd ∈ML(ψ) such
that:

sup
z∈K
|fd(z)− hd(z)| < ε. (12)

We fix the functions h1, ..., hD that approximate the D
components of the function f . We define the function h :
RL 7→ RD defined by h = (h1, ..., hD). This function ap-
proximates f :

sup
z∈K
||f(z)− h(z)||22

= sup
z∈K

D∑
d=1

|fd(z)− hd(z)|2

≤
D∑
d=1

sup
z∈K
|fd(z)− hd(z)|2

≤
D∑
d=1

sup
z∈K
|fd(z)− hd(z)| sup

z∈K
|fd(z)− hd(z)|

≤ Dε2.

The function f can, therefore, be approximated by a neu-
ral network with precision ε, and specifically by the neural
network represented by h and obtained by juxtaposing the
neural networks defining the hd, for d = 1, .., D.



2.2. Proof

We turn to the proof of Proposition 1, which we recall
here. In what follows, functions with images in M are de-
noted with a subscript M , while functions with images in a
tangent space of M have no subscript.

Proposition 1 Let (NT , νT ) be a weighted Riemannian
submanifold of M , embedded in a submanifold L of M
homeomorphic to RL and for which there exists an embed-
ding fM that verifies: νT = fM ∗ µT . Let assume the ex-
istence of µ ∈ M such that N ⊂ V (µ), where V (µ) is the
maximal domain of global bijection of the Riemannian ex-
ponential of M at µ. Then, for any 0 < ε < 1, there exists
a Riemannian VAE with decoder represented by a neural
network fθ, parameterized by θ, such that:

d2(NT , Nθ,T ) < C2
T,DDε

2, (13)

where d2 is the 2-Wasserstein distance and Nθ,T =
(fθ(RL, fθ ∗ µT )), and CT,D a constant that depends on
T and D.

Proof 2 Let (NT , νT ) be a weighted Riemannian subman-
ifold of M verifying the assumptions. We write L =
fM (RL) the embedded Riemannian submanifold of M ,
homeomorphic to RL, that contains NT : NT ⊂ L =
fM (RL). Without loss of generality, we can restrict NT
to the support of the singular probability distribution νT .
We write NT = fM (BT ). As BT is compact and fM is
continuous by definition of an embedding, we observe that
NT is compact.

As NT ⊂ V (µ), we can define the function:

f : BT 7→ TµM

z 7→ f(z) = Logµf
M (z).

We have f ∈ C(BT ,RD), where BT is a compact subset
of RL. From Lemma 1, there exists a neural network repre-
sented by fθ parameterized by θ, such that:

sup
z∈BT

||f(z)− fθ(z)||22 < Dε. (14)

We fix this neural network and corresponding function fθ.
We introduce the weighted submanifold (Nθ,T , νθ,T as-

sociated to the neural network represented by fθ:

Nθ,T = (fMθ (BT ), fMθ |BT ∗ N (0, 1)), (15)

which corresponds to the generative model defining the Rie-
mannian VAE. We show that Nθ,T can approximate NT
with a precision ε, in terms of the 2-Wasserstein distance.

We compute the squared 2-Wasserstein distance between
NT and Nθ,T . By definition, the squared 2-Wasserstein dis-
tance between weighted submanifolds is the 2-Wasserstein

distance between the probability measures defined on them.
Here, the probability distributions are νT and νθ,T , so that
we write:

d2(NT , Nθ,T )2

= inf
γ∈Γ(νT ,νθ,T )

∫
M×M

dM (x1, x2)2dγ(x1, x2),

where Γ(ν, νθ,T ) is the collection of all measures onM×M
with marginals ν and νθ,T on the first and second factors
respectively. As ν and νθ,T have support on N and Nθ
respectively, this can equivalently be written:

d2(NT , Nθ,T )2

= inf
γ∈Γ(νT ,νθ,T )

∫
NT×Nθ,T

dM (x1, x2)2dγ(x1, x2).

We define a change of variables to compute the integral
defining d2. The function fM is injective on its image by
definition of an embedding. Without loss of generality, we
assume that the function fMθ is injective on its image, i.e.
that its differential is of full rank. If the differential is not
of full rank, we approximate it by a full rank matrix as the
space of invertible matrices is dense in the space of matri-
ces, with a precision such that Equation 14 still holds. We
consider the homeomorphism:

((fM )−1, (fMθ )−1) : NT ×Nθ,T 7→ BT ×BT , (16)

which is a “global chart” of the submanifold NT ×Nθ,T of
M ×M .

We write the integral defining d2 in the chart defined by
Equation 16. In other words, we perform the change of vari-
ables (z1, z2) = ((fM )−1(x1), (fMθ )−1(x2)) to represent
the point (x1, x2). We get:

d2(NT , Nθ,T )2

= inf
γ∈Γ((fM )−1∗νT ,(fMθ )−1∗νθ,T )∫

BT×BT
dM (fM (z1), fMθ (z2))2dγ(z1, z2)

= inf
γ∈Γ(µT ,µT )∫

BT×BT
dM (fM (z1), fMθ (z2))dγ(z1, z2),

where the probability density γ is expressed in this chart:

dγ(z1, z2) = γ(z1, z2)dz1dz2, (17)

and we have (fMθ )−1 ∗ νθ,T = µT by construction.
We use the definition of the inf to get an upper bound

on d2. From the definition of the Wasserstein distance, the
notation Γ(µT , µT ) refers to the collection of measures on
BT ×BT with marginals µT on the first and second factors



respectively, for the Euclidean measure of RL. We consider
the following element γ̃ of Γ(µT , µT ):

γ̃(z1, z2) = µT (z1)δz1=z2 = µT (z2)δz1=z2 . (18)

By the property of the inf, we get the upper bound:

d2(NT , Nθ,T )2 ≤
∫
BT×BT

dM (fM (z1), fMθ (z2))2dγ̃(z1, z2)

=

∫
BT

dM (fM (z), fMθ (z))2dµT (z).

We define the compactK of TµM as the compact f(BT )

extended in L2 norm by a distance
√
D in all directions. We

have, for any z ∈ BT : f(z) ∈ f(BT ) ⊂ K and fθ(z) ∈ K
following from inequality 14 since ε < 1. The Riemannian
exponential Exp(µ, •) is continuous on the compact K, and
therefore Lipshitz on K. There exists a constant CT,D such
that for any y1, y2 ∈ K, we have:

dM (Exp(µ, y1),Exp(µ, y2)) < CT,D||y1 − y2||2. (19)

We apply this to y1 = f(z) and y2 = fθ(z) for any z ∈ BT ,
and we take the square:

d2
M (Exp(µ, f(z)),Exp(µ, fθ(z)))

< C2
T,D||fM (z)− fθ(z)||22,

which can be rewritten:

d2
M

(
fM (z), fMθ (z)

)
< C2

T,D||fM (z)− fθ(z)||22.

By definition of the sup, as an upper bound, we get:

d2
M

(
f(z), fθ(z)

M
)
< C2

T,D sup
z∈BT

||f(z)− fθ(z)||22

≤ C2
T,DDε

2,

where the last inequality comes from Equation 14. We inte-
grate on both sides using the measure µT , and write:

d2(NT , Nθ,T )2 ≤
∫
RL
dM (fM (z), fMθ (z))2dµT (z)

≤
∫
RL
C2
T,DDε

2dµT (z)

≤ C2
T,DDε

2.

Therefore, for any T , any weighted submanifoldNT ver-
ifying the assumptions can be approximated by a submani-
fold Nθ,T generated by the model of a Riemannian VAE.

3. “Important remark” of Section 4.3
Section 4.3 of the paper highlights that the Riemannian

VAE (rVAE) learning procedure does not boil down to pro-
jecting the manifold-valued data onto some tangent space

of M and subsequently learning with a Euclidean VAE. We
provide details about this statement here.

Consider a dataset x1, ..., xn on the manifold M and a
point µ ∈ M , such that xi ∈ V (µ) for all i = 1, .., n.
Consider using a (Euclidean) VAE to fit a submanifold to
the data logµ(x1), ..., logµ(xn) in TµM ' RD. The VAE
makes the implicit assumption that the underlying distribu-
tion is:

logµ(X)|Z ∼ N (fθ(Z), σ2ID), (20)

and maximizes the associated (lower bound of the) log-
likelihood.

In contrast, consider using a rVAE to fit a submanifold to
the data x1, ..., xn. The rVAE makes the implicit assump-
tion that the underlying distribution is:

X|Z ∼ NM (fMθ (Z), σ2ID), (21)

where fMθ (z) = Exp(µ, fθ(z)) and maximizes the associ-
ated (lower bound of the) log-likelihood.

The generative models (20) and (21) are not equiva-
lent. Taking the Riemannian log at µ of the data generated
with model (21) is not equivalent to generating data with
model (20). Figure 1 shows the difference in terms of the
2D histograms for generative models on the tangent space
TµS

2 of a 2D sphere S2 with pole µ.
Figure 1 (a) shows the function z ∈ Rfθ(z)TµS2 ' R2.

Figure 1 (b) shows the difference of 2D histograms between
data generated from the Euclidean VAE model and data
generated from the rVAE model and subsequently projected
(in the sense of the Riemannian Logarithm) at the tangent
space of their Fréchet mean. The sample size for both his-
tograms is n = 107, with 80 bins in both dimensions.
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-200

-400

-600

(a) (b)

Figure 1. Comparaison of samples generated from the Euclidean
VAE model and the “projected” Riemannian VAE model. (a) Un-
derlying true submanifold in the tangent space of the sphere S2.
(b) Difference of 2D histograms between data generated from the
Euclidean VAE model and from the “projected” Riemannian VAE
model in the tangent space of the sphere S2.

The noise’s standard deviation coming from the rVAE
model increases with the distance from the mean in the tan-
gent space, which is also the origin of the tangent space.
Due to the sphere’s curvature, Riemannian balls on the
sphere get deformed when projected on the tangent space.



The deformation increases with the distance from the ori-
gin of the tangent space. Consequently, the Riemannian
Gaussian’s level sets on the sphere get deformed on the tan-
gent space. This behavior creates a curvature-induced het-
eroscedasticity of the noise.

4. Computations for Section 5.1
4.1. Model

We consider data generated with the model of probabilis-
tic PCA (PPCA) with µ = 0 [5], i.e. a special case of a
rVAE model:

Xi = wZi + εi, (22)

where: w ∈ RD×L, Z ∼ N (0, IL) i.i.d. and ε ∼ N (0, ID)
i.i.d.. The only parameter of model (22) is θ = w. The true
distribution of the data writes:

pθ(x) = N
(
0, wwT + ID

)
. (23)

In this specific case, the true posterior of the la-
tent variables z is tractable and writes: pθ(z|x) =
N
(
ΣwTx,Σ = (IL + wTw)−1

)
. This model could be

learned through the EM algorithm, which converges to a
maximum likelihood estimator of w, under regularity as-
sumptions, and computes the associated tractable posterior.
However, we train a VAE to illustrate the statistical incon-
sistency described in the main paper. We chose a variational
family of Gaussian distributions with variance equal to 1:

Q = {N (φ, 1) | φ ∈ RL}, (24)

parameterized by the unique parameter φ.

4.2. Landscape and results for D = 1 and L = 1

The VAE learns the parameters w, φ of the model, and
approximate variational distribution by maximizing the ev-
idence lower-bound (ELBO):

L1(x, θ, φ) (25)
= l(θ, x)− KL (q(z|x) ‖ p(z|x)) (26)

in θ = w and φ, where KL is the Kullback-Leibler diver-
gence. The case D = 1 and L = 1 allows to compute the
argument maxima in closed forms, as well as to represent
the landspace of the ELBO as a function of the parameters
(w, φ) in 2D as in Figure 2. We set w = 2 and a sample
size n = 1000.

Figure 2 shows the landscape the ELBO as a function of
(w, φ). The vertical green line represents the true value of
the parameter: w = 2, while the vertical blue lines represent
the maximum likelihood estimates (MLE) ofw given a sam-
ple of size n = 1000. The MLE has two solutions, showing
unidentifiability of the problem because of the symmetry in

Figure 2. Criteria as functions of the parameters θ and φ. From
left to right: log-likelihood, negative KL divergence to the true
posterior and ELBO (nats).

model (22). The black curve represents the optimal varia-
tional distribution qφ(z|x), for a given parameter w of the
generative model. The grey curve represents the optimal
member of the true posterior pw(z|x), for a given varia-
tional posterior qφ(z|x). We denote σ̂2 = 1

n

∑n
i=1 x

2
i .

The optimal solutions would be wopt = wmle =
√
σ̂2 − 1

and φopt = φopt(wmle), i. e. the intersection of the blue line
and the black curve, or symmetric solution w = −wmle. In
other words, we would like the VAE to converge to the MLE
for w, and subsequently computes the optimal variational
distribution given this estimate. However, the VAE maxi-
mizes the ELBO and converges to one of the two red dots.

Specifically, it converges to welbo =
√

σ̂2

2 − 1 and associ-
ated φelbo = φopt(welbo). The VAE algorithm is, therefore,
suboptimal for parameter learning. The KL to the poste-
rior is optimized in both parameters simultaneously. Con-
sequently, the two parameters collapse towards another. In
Figure 2, both are attracted to 0. As the ELBO has the neg-
ative KL divergence as one of its terms, the parameter w is
attracted to this optimal point of the negative KL. Another
way of seeing it is as follows: the negative KL takes differ-
ent values on the black curve, with a maximum close to 0.
Thus, on this black curve, (w, φ) is attracted to 0.

4.3. Computations for D = 1 and L = 1

We present the computations for the results of the previ-
ous subsection. We compute the two terms of the ELBO,
the log-likelihood, and the KL to the posterior. We maxi-
mize them in the parameters (w, φ).

We first compute the log-likelihood.

Lemma 2 The log-likelihood of the generative model
writes:

L = −1

2
log(2π)− 1

2
log(1 + w2)− σ̂2

2(1 + w2)
,

where:

σ̂2 =
1

n

n∑
i=1

x2
i . (27)



A maximum likelihood estimator (MLE) for w verifies:
w2 = σ̂2 − 1. There are two MLEs: ŵ =

√
σ̂2 − 1 and

ŵ = −
√
σ̂2 − 1. The model is unidentifiable.

Proof 3 The log-likelihood writes:

L = Epdata(x) [log p(x)]

= Epdata(x)

[
logN (0, 1 + w2)

]
= Epdata(x)

[
−1

2
log(2π(1 + w2))− x2

2(1 + w2)

]
= −1

2
log(2π)− 1

2
log(1 + w2)− 1

2(1 + w2)
Epdata(x)x

2

' −1

2
log(2π)− 1

2
log(1 + w2)− 1

2(1 + w2)

1

n

n∑
i=1

x2
i

= −1

2
log(2π)− 1

2
log(1 + w2)− σ̂2

2(1 + w2)

where: σ̂2 =
1

n

n∑
i=1

x2
i .

The MLE for w is computed as follows:

∂L

∂w
= 0⇐⇒ ∂L

∂w

(
−1

2
log(1 + w2)− σ̂2

2(1 + w2)

)
= 0

⇐⇒

(
−1

2

2w

1 + w2
+

σ̂22.2w

4(1 + w2)2

)
= 0

⇐⇒

(
1− σ̂2

1 + w2

)
= 0

⇐⇒ 1 + w2 = σ̂2

⇐⇒ w2 = σ̂2 − 1.

Thus, there are two MLEs: ŵ =
√
σ̂2 − 1 and ŵ =

−
√
σ̂2 − 1.

We turn to the KL between the approximate variational
posterior and the true posterior.

Lemma 3 The Kullback-Leibler divergence between the
approximate posterior and the true posterior is:

KL (qφ(z|x) ‖ pw(z|x))

= KL
(
N (φx, 1) ‖ N

(
wx

1 + w2
,

1

1 + w2

))
= −1

2
log(1 + w2) +

1

2
(1 + w2) +

1

2

(
w − φ− φw2

)2
1 + w2

x2

− 1

2
.

Furthermore, for a fixed w, the φ minimizing the above KL
divergence is given by: φ = w

1+w2 .

Proof 4 The KL divergence between two multivariate
Gaussians in L dimensions N (µ1,Σ1) and N (µ2,Σ2) is:

KL(µ1,Σ1 ‖ µ2,Σ2)

=
1

2

(
log
|Σ2|
|Σ1|

− L+ tr(Σ−1
2 Σ1) + (µ2 − µ1)Σ−1

2 (µ2 − µ1)

)
.

Thus, the KL between the approximate posterior and the
true posterior is:

KL (qφ(z|x) ‖ pw(z|x))

= KL
(
N (φx, 1) ‖ N

(
wx

1 + w2
,

1

1 + w2

))
=

1

2
log

1/(1 + w2)

1
+

1

2/(1 + w2)

+

(
wx/(1 + w2)− φx

)2
2/(1 + w2)

− 1

2

=
1

2
log

1

1 + w2
+

1

2
(1 + w2)

+

(
wx/(1 + w2)− φx

)2
2/(1 + w2)

− 1

2

= −1

2
log(1 + w2) +

1

2
(1 + w2)

+
1 + w2

2

(
wx

1 + w2
− φx

)2

− 1

2

= −1

2
log(1 + w2) +

1

2
(1 + w2)

+
1

2(1 + w2)

(
wx− φx(1 + w2)

)2 − 1

2

= −1

2
log(1 + w2) +

1

2
(1 + w2)

+
1

2

(
w − φ− φw2

)2
1 + w2

x2 − 1

2
.

The expressions of the log-likelihood and the KL to the
true posterior can be combined to compute the ELBO.

Lemma 4 The ELBO writes:

L1(x, θ, φ)

= l(θ, x)− Epdata(x) [KL (q(z|x) ‖ p(z|x))]

=
1

2
(1− log(2π))− 1

2
log

(
1 + w2

w2

)
− 1

2
w2 − σ̂2

2

(
1

1 + w2
+ (1− φw)2

)
,

where: σ̂2 = 1
n

∑n
i=1 x

2
i .



Proof 5 The ELBO writes:

L1(x, θ, φ)

= l(θ, x)− Epdata(x) [KL (q(z|x) ‖ p(z|x))]

= −1

2
log(2π)− 1

2
log(1 + w2)− σ̂2

2(1 + w2)

− Epdata(x)

[
−1

2
− logw +

1

2
w2 +

1

2
(1− φw)2x2

]
= −1

2
log(2π)− 1

2
log(1 + w2)− σ̂2

2(1 + w2)

+
1

2
+ logw − 1

2
w2 − 1

2
(1− φw)2Epdata(x)

[
x2
]

=
1

2
(1− log(2π)) + logw − 1

2
log(1 + w2)− 1

2
w2

− σ̂2

2

(
1

1 + w2
+ (1− φw)2

)
=

1

2
(1− log(2π))− 1

2
log

(
1 + w2

w2

)
− 1

2
w2

− σ̂2

2

(
1

1 + w2
+ (1− φw)2

)
.

Fixing w, the argument minimum of
KL (qφ(z|x) ‖ pw(z|x)) for φ is φopt(w) = w

1+w2 .
The function w → φopt(w) is represented by the black
curve on Figure 1 of the paper. This is the optimal
variational distribution, given a parameter w of the
generative model. Fixing φ, the argument minimum of
KL (qφ(z|x) ‖ pw(z|x)) for w is wopt(φ) = φσ̂2

φ2σ̂2+1
. The

function φ → wopt(φ) is represented by the grey curve on
Figure 2. This is the optimal “true” posterior, given a value
of the variational posterior.

5. Details on experiments of Section 6
We provide details on the experiments comparing the

following methods: VAE, rVAE, and VAE projected.

5.1. Synthetic data

We use a “true” decoder to generate synthetic data. The
latent space is R. The decoder has two fully connected lay-
ers of dimension 2 each. The model writes:

fθ(z) = w2g(w1z + b1) + b2, (28)

where we choose w1 =

(
3
−2

)
, b1 =

(
1
3

)
, w2 =(

0.05 −0.5
−0.15 −0.1

)
and b2 =

(
0.062
0.609

)
. We use the softplus

as the nonlinearity g. We use the Riemannian exponential
of the sphere to shoot the submanifold on the sphere. We
add noise of variance σ2, so that we have:

X ∼ NM (Exp(µ, fθ(z)), σ
2), (29)

where the Fréchet mean µ is a point on the sphere, the image
of (0, 0) by the Riemannian exponential.

5.2. Architectures of VAE, rVAE and VAE projected

We train a VAE, a rVAE, and a VAE projected on the
generated data.

The rVAE decoder has the same architecture as the de-
coder that has produced the data, i.e. a one-dimensional la-
tent space, and two fully connected layers with 2 units each,
and parameters w1, b1, b2 ∈ R2 and w2 ∈ R2×2.

The VAE decoder has an architecture with a one-
dimensional latent space, and two fully connected layers
with 2 and 3 units respectively, and parameters: w1, b1 ∈
R2 and w2 ∈ R3×2, b2 ∈ R3. The VAE projected is the
result of the VAE trained on the data and projected back on
the sphere. Therefore its architecture is the VAE’s.

5.3. Visual comparison of the methods

Figure 3 shows the true submanifold in light green, as
well as the result of the training of the PGA, VAE, the Rie-
mannian VAE, and the VAE projected back on the sphere
for n = 10k and σ = 0.35. We observe that PGA is off, as
it cannot learn a nongeodesic subspace. The extrinsic VAE
learns a submanifold in the embedding space. The rVAE
and VAE projected give very similar results.

Figure 3. Visual comparison of the submanifold learning methods
for n = 10k and σ = 0.35.

6. Details on experiments of Section 7
6.1. Brain connectomes dataset

We give details on the Human Brain Connectome dataset
[6]. The “1200 Subjects release” includes 3T resting-state
functional MRI (rs-fMRI) imaging data from 1206 healthy
young adult participants. We focus on the sub dataset
“R812” which includes 812 subjects with rs-fMRI data re-
constructed with the latest reconstruction algorithm.

We choose a parcellation of the brain into N = 15 re-
gions or “nodes” and use the subject-specific sets of “node
time-series” provided by HCP. Each subject is represented
by 15 time-series that correspond to the activation of each



Figure 4. Elements from the dataset of HCP brain connectomes
[6], with 15 nodes in each connectome.

of the 15 brain regions through time. From each subject-
specific time-series, we build the subject-specific parcel-
lated connectome, which is the 15x15 correlation matrix
corresponding to the correlations between nodes. Each of
the n = 812 subjects is, therefore, represented by a 15x15
symmetric positive definite (SPD) matrix. Elements ran-
domly sampled from this dataset are shown in Figure 4.

6.2. Riemannian geometry of SPD matrices

The space of symmetric positive definite (SPD) matrices
in N dimensions is a manifold defined as:

SPD(N)

=
{
S ∈ RN×N : ST = S,∀z ∈ RN , z 6= 0, zTSz > 0

}
.

It has dimension D = N(N−1)
2 . The manifold SPD(N) can

be equipped with different Riemannian metrics, for exam-
ple the affine-invariant metric or the Log-euclidean metric.
We note that SPD(N) with either the Log-euclidean metric
or the affine-invariant metrics is a Hadamard manifold.

6.3. VAE and rVAE architectures

We present the details of the VAE and rVAE architec-
tures used in the experiments on the HCP dataset [6]. The
decoder fθ is a fully connected neural network. We did not
choose a convolutional network as SPD matrices are not im-
ages. The layers have dimensions L, L2 and D, where L is
the dimension of the latent space and D = 120 the dimen-
sion of the data space. In other words:

fθ(x) = wf2 g(wf1x+ bf1 ) + bf2 , (30)

for bf1 ∈ RL2

, wf1 ∈ RL×L2

, bf2 ∈ RD, wf2 ∈ RL2×D.
We use ReLU as the activation function g. For the Rieman-
nian VAE, we add the Riemannian exponential map Expµ
at µ after the last layer, where µ is chosen to be the identity
matrix µ = IdN×N . As a consequence, Logµ and Expµ cor-
respond to the matrix logarithm and the matrix exponential.

The encoder is a fully connected neural network, with
three layers of dimensions D = 120, L2 and L. In other

words:

µφ(x) = wµ2 g(w1x+ b1) + bµ2 ,

log σ2
φ(x) = wσ2 g(w1x+ b1) + bσ2 ,

for b1 ∈ RL2

, w1 ∈ RD×L2

, bµ2 , b
σ
2 ∈ RL and wµ2 , w

σ
2 ∈

RL2×L . We use ReLU as the nonlinearity g.

6.4. VAE and rVAE training

Each SPD matrix is flattened and represented as a vector
x of dimension D that corresponds to its upper half. We
denote log(x) the vector representing the upper half of the
matrix logarithm of the SPD matrix. The probability density
functions of the noise models write in the Euclidean space:

pθ(x|z) =
1√

(2π)Dσ2D
exp

(
−||x− fθ(z)||

2

2σ2

)
, (31)

and, in the Riemannian space:

pθ(x|z) =
1√

(2π)Dσ2D
exp

(
−|| log(x)− fθ(z)||2

2σ2

)
.

(32)
The integration constant only depends on σ, as the Rieman-
nian manifold is Hadamard. The losses write respectively:

LVAE(x(i)) =
1

2

L∑
l=1

(
1 + log(σ

(i)
l )2 − (µ

(i)
l )2 − (σ

(i)
l )2

)
− log

√
(2π)Dσ2D − ||x− fθ(z)||

2

2σ2
,

and:

LrVAE(x(i)) =
1

2

L∑
l=1

(
1 + log(σ

(i)
l )2 − (µ

(i)
l )2 − (σ

(i)
l )2

)
− log

√
(2π)Dσ2D − || log(x)− fθ(z)||2

2σ2
.
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