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Figure 1. The effects of using edges computed within different radii
r. (a) - all edges within a sphere are used; (b) - only edges in the
upper hemisphere along time axis are used. We show the plots
for the first 30 epochs on ’boxes’ validation set, with subsampling
u = 2 and slice width w = 0.3 sec.

1. Edge Configurations - Ablation Study
Our main results were computed with ’upper hemi-

sphere’ edge configuration; the motivation to use only edges
in the upper hemisphere is the ability to remove half the
edges around each point, significantly reducing memory
footprint on GPU. We perform additional ablation studies to
compare how full (all edges in the sphere) and upper hemi-
sphere edge configurations affect the quality of training for
different values of r. All experiments use boxes validation
set, and are trained on boxes train set, with u = 2, w = 0.3.

On the Fig. 1 (a) we show mIoU scores for the first 30
epochs of training with the full edge configuration. Starting
from r = 5 the results do not show significant improve-
ments as r increases. In this setting, each point on the first
layer aggregates features in a sphere with diameter d = 2r
- from 10 to 30 pixels for r > 5, and the network might
reach saturation in the amount of locally available informa-
tion. On the Fig. 1 (b) we perform similar experiments with
our baseline upper hemisphere configuration. The results
improve as r increases, but IoU is slightly lower than for
the full configuration.

The experiments with r = 1 show the performance of
the network with no spatial connections - since pixel co-
ordinates are discretized, only connections along temporal
axis can exist. We show additional side-by-side edge con-
figuration comparisons for each radii on Fig. 3; the per-step
runtime for these experiments is shown in Table 1.

2. Training Time
We show additional timing measurements in Table 1,

with upper hemisphere and full configurations, for u =
2, w = 0.3, r = 1..15. Although slowdown is expected
with full configuration, the main reason behind using only
the upper hemisphere was high memory consumption with
small u values and large r.

3. Additional Qualitative Results
3.1. Dataset

A sample of EVIMO dataset (boxes validation, sequence
0) is shown on Fig. 2. The points are colored according the
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Figure 2. A sample of the preprocessed EVIMO dataset, plotted in
3D (time axis is vertical). Red color channel encodes object id,
and green encodes event polarity; a separately moving object is
visible on the top part of the image in white and purple colors.
The green and blue colors represent background.

r 1 3 5 7 10 15

upper 0.293 0.415 0.636 0.748 0.975 1.340

full 0.267 0.669 0.858 0.984 1.282 1.751
Table 1. Average time per training step (forward and backward
pass), in seconds, with batch size b = 3, subsampling u = 2,
slice width w = 0.3 sec. for edge radii r = 1 to 15 pixels. full
corresponds to all edges in a sphere of radius r, upper corresponds
to edges only in the upper hemisphere along time axis. The results
were collected using 3 Nvidia GTX 1080Ti GPUs.

corresponding event polarity in green channel, and object
id in red channel. The background is shown in green and
blue, and the object motion is visible on the upper part of
the image, in white and purple. Note how the shape of the
cloud follows scene motion.

3.2. Inference with Large w

We train a baseline neural network with w = 0.3, r =
10, u = 2 and apply it to the cloud with w = 1.0. The
qualitative result is shown on Fig. 4 - the ground truth is on
the left, and inference is on the right; the object is shown
in blue color. We achieve similar mIoU scores on larger
slices as on the original ones.

3.3. Additional Qualitative Results

Fig. 5 shows 3D renderings on the segmentation results,
on boxes validation set. For each figure, inference is on
the left, ground truth is on the right; background shown in
black. Most of the loss in IoU is due to lower recall, while
precision is reasonably high. We attach the .ply models for
these results together with this supplementary material.

3.4. Quality of Normal Estimation

Event surface normals are crucial features in our learn-
ing pipeline. We take a sample of EV-IMO dataset (box
validation set, seq 00) to evaluate the quality and distribu-
tion of surface normal direction in both spatial and temporal
domains. The histograms for a slice of 0.5s. are presented
on Fig. 6. The spatial quality of normals inevitably suf-
fers from discretization artifacts caused by the limited res-
olution of the DAVIS346 sensor; the scene includes mostly
horizontal and vertical edges, and the dominant direction is
clearly seen on Fig. 6 (a). The temporal plot (b) is notably
smoother, which is caused by the variation in scene depth
and hence - normal flow magnitude, and also higher tempo-
ral resolution of the camera.
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Figure 3. Additional ablation study for full and upper hemisphere edge configurations and for different radii. For r = 1 pixels, most edges
connect to events only along time axis. We show the plots for the first 30 epochs on ’boxes’ validation set, with subsampling u = 2 and
slice width w = 0.3 sec.



Figure 4. Additional qualitative results: the network was trained on 0.3 sec. slices with r = 10, u = 2 and tested on 1.0 sec. slices to
validate the invariance to slice width. Time axis is vertical; the object is in blue, black color is background. The left image represents
ground truth, right is inference.
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Figure 5. Additional qualitative results: the network was trained with w = 0.3, r = 10, u = 2. For each figure: left is inference and right
is ground truth (two figures per line are shown). Blue represents an object, black is background.
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Figure 6. Qualitative distribution of surface normals for ’box’ validation dataset, sequence 0, for a 0.5 second event slice (featuring near
constant velocity). (a) - distribution of normal direction in camera plane; (b) - distribution of normal direction in plane parallel to time
axis and orthogonal to edge gradient.


