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A. More Dataset Details
We provide statistics of the PartNet [3, 2] dataset, as well

as the synthetic dataset, and show a few samples from each.
Additionally, we discuss the procedural shape generation
pipeline that we use to create the synthetic dataset.

A.1. Dataset Statistics

In our experiments, we use four datasets. A dataset of
4,871 chairs, 5,099 tables, and 862 cabinets in PartNet [3].
Additionally, we create a synthetic dataset of 57,600 chairs,
stools, and sofas, where we have a ground-truth correspon-
dence between the deltas in the neighborhoods of different
source shapes. For each dataset, we use the same hierarchi-
cal bounding box representation. Figure 1 show examples of
each dataset and more statistics are summarized in Table 1.

Table 1. Dataset Statistics. We show number of shapes, average
tree depth, average leaf count for each dataset, and the neighbor-
hood size (train time/test time), i.e. the number of shape deltas for
each source shape.

#shapes tree depth #leafs |N |

PartNet chair 4871 4.039 11.097 100/20
PartNet table 5099 5.127 7.537 100/20
PartNet furniture 862 4.522 14.377 100/20
Synthetic 57600 3.667 10.111 96/96

A.2. Synthetic Dataset Generation

In this section, we introduce the procedural generation
pipeline of the synthetic dataset. In the procedural genera-
tion, we explicitly create shape deltas for each source shape.
This gives us knowledge of the ground truth correspondences
between the shape deltas of different source shapes. We use
this ground truth to quantitatively evaluate our edit transfer
performance.

A chair shape consists of four basic components: a
back, a seat, an optional pair of arms and a leg base with

∗: indicates equal contributions.
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Figure 1. Dataset Examples. We show examples from each of
the four datasets we use in our experiments. Chairs, tables and
furniture are from the PartNet dataset, while the synthetic dataset
is procedurally generated. Colors correspond to part semantics.

possibly different types of stretcher bars connecting four
legs. We randomly sample 8 global parameters for each
shape: (wleg, hleg, wseat, dseat, hseat, hback, wback, dback)
where wleg and hleg are leg width and height, wseat, dseat,
and hseat are seat width, depth and height, and finally, wback,
dback, and hback refer to back width, depth and height. All
parameters for the other parts are deterministically derived
based on the eight global parameters or assigned with fixed
values. For example, chair arm depth is half of the seat depth
and all stretcher bars have a fixed height of 0.03. Combina-
tions of values for the 8 global parameters give us a large set
of source shapes.

We create structural variations for each of these shapes by
changing the structure of individual parts. For each shape,
we create 4 variants for back (e.g. with or without back bars,
with vertical bars or horizontal bars), 2 variants for legs



(e.g. short or long), 3 variants for arms (e.g. with or without
arms, different layouts for armrest and arm support), and 4
variants for leg stretchers (e.g. squared layout, H-like layout,
or X-like layout). In total, we make 4 × 2 × 3 × 4 = 96
structural variants for the same shape. A few examples
of these variants are shown in Figure 2. We normalize all
generated shapes within a unit sphere. In this procedural
dataset, corresponding variants of different source shapes
have the same index. Thus, for two variants with index i and
j of two shapes A,B: (Ai, Aj) and (Bi, Bj), we can define
a ground-truth for the edit transfer as (Aj −Ai) +Bi = Bj .

In real chairs, we do not always have correspondences
between all possible shape variations. For example, a delta
that makes the legs shorter does not have a correspondence
in a sofa that does not have legs. To model these differences
in the delta neighborhoods of our synthetic chairs, we di-
vide them into three sub-types: 19,200 chairs, 19,200 sofas,
and 19,200 stools. The creation of sofa shapes and stool
shapes follow the same procedural generative grammar as
chair shapes, except that we remove the leg base for sofas
and remove chair back and arms for stools. For each of these
sub-types, the dataset comprises of 200 groups of shapes,
each with 96 structural variations. Between two sub-types, a
known subset of the deltas does not have a correspondence.
For example, deltas that modify the legs of chairs do not
have a correspondence in sofas. We manually set the corre-
spondence of these deltas to the identity edit (i.e. the delta
that does not change the shape).

We have released the code for procedural shape genera-
tion pipeline and the generated synthetic dataset.

B. Network Architecture Details
In our architecture, individual encoders and decoders

share a similar architecture, unless noted otherwise in the
main paper. In our experiments, we found that the total num-
ber of layers in the encoders and decoders has a significant

Figure 2. Synthetic chair variations. We show a few examples of
the 96 structural variations of a bench, including variations to the
legs, base, backrest, and armrests.
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Figure 3. Typical encoder/decoder architecture. Unless noted
otherwise we use this type of architecture for our individual en-
coders and decoders. The red dots are feature vectors in R256,
arrows correspond to operations.

adverse effect on the performance of the cVAE, especially
since the recursive traversal depends on the depth of the
shape tree. To keep the number of layers low, we use a rel-
atively simple architecture for all individual encoders and
decoders (unless noted otherwise): a multi layer perceptron
(MLP) that has two layers. We also add a skip connection [1]
that starts at the input and is added to the output to shorten
the information path. This simple architecture is illustrated
in Figure 3.

C. Additional Experiments
We provide an ablation study for the network architecture

design choices and more experimental results with compar-
isons to our baselines. Note that methods that only encode
geometry and not structure, such as methods that represent
objects as voxels, point clouds, or implicit functions, are not
suitable baselines for our method. The domain we work on
consists of both geometry and structure, where structure is
an abstraction of geometry. Methods that work on geometry
only have a fundamentally different goal than our method.
Their outputs, being geometry only, cannot be compared
fairly to our output that combines geometry and structure.
For this reason we only compare to methods that work on
the same domain as ours in our experiments.

C.1. Ablation Study

We perform an ablation of four design choices in our
architecture: our extensive use of skip connections, using
group normalization, using a separate classifier to determine
of added nodes are leafs, and encoding deltas of box pa-
rameters, instead of modified boxes. For each ablation, we

Table 2. Ablation. We compare four ablated versions of our method
to the full version in the last row. Each row shows the geometric
and structural reconstruction error for both geometric and structural
neighborhoods, as described in Section 4 of the paper.

N g N s

Egeo
r Est

r Egeo
r Est

r

No Skip Conn. 0.900 0.201 0.713 0.364
No Group Norm. 0.749 0.083 0.525 0.142
No Leaf Class. 0.759 0.087 0.533 0.171
No Box Deltas. 1.737 0.083 1.766 0.142
Full 0.754 0.082 0.531 0.136
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Figure 4. Edit Generation Examples. Several examples of variations are generated for the source shapes on the left. We show variations
generated with both geometric neighborhoods N g and structural neighborhoods N s.

Table 3. Edit Reconstruction. We compare the geometric and
structural reconstruction errors for the identity baseline (ID), Struc-
tureNet (SN), StructureNet-edge (SNe), and StructEdit (SE) on
both geometric neighborhoods N g and structural neighborhoods
N s.

N g N s

chair table furn. avg. chair table furn. avg.

Egeo
r

ID 1.000 1.000 1.001 1.000 1.000 1.000 0.999 1.000
SN 0.886 0.972 0.875 0.911 0.656 0.492 0.509 0.553
SNe 0.893 1.118 0.895 0.969 0.658 0.575 0.517 0.583
SE 0.755 0.805 0.798 0.786 0.531 0.414 0.434 0.459

Est
r

ID 0.946 0.940 0.951 0.945 1.107 1.341 1.124 1.191
SN 0.264 0.370 0.388 0.340 0.734 1.469 0.915 1.039
SNe 0.273 0.380 0.415 0.356 0.711 1.475 0.843 1.010
SE 0.082 0.151 0.139 0.124 0.136 0.246 0.183 0.188

evaluate the reconstruction and generation performance on
the chairs dataset. From these four design choices, the skip
connections have the largest positive impact on the structure
of shape deltas, while encoding box deltas instead of abso-
lute boxes has the largest positive effect on the geometry.
Table 2 shows the performance for each ablated variant of
our method.

C.2. Edit Reconstruction

We add a version of StructureNet with relationship edges
(SNe) as additional baseline to the edit reconstruction results
in Table 3. The StructureNet version with edges tends to
have a slightly lower performance, since the relationship
edges require reconstructing additional information.
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Figure 5. Edit interpolation. Edit A and B on the left are inter-
polated with edit B and D on the right. Intermediate steps of the
interpolated edits are applied to the source shape (middle row) to
get the interpolated shapes in the top and bottom rows. Note how
changes in both geometry and structure are interpolated smoothly.

C.3. Edit Generation

Full edit generation metrics, including separate quality
and coverage errors and the additional StructureNet baseline
that includes relationship edges, are given in Table 4. We
also show more qualitative results in Figure 4.

C.4. Edit Interpolation

Our latent space of edits has all the benefits that are en-
abled by a smooth latent space, such as the ability to interpo-
late between two edits. In Figure 5, we show two examples



Table 4. Edit Generation. We compare the delta distribution generated by our method to several baselines. We evaluate on three PartNet
subsets, using both geometric and structural neighborhoods. The quality, coverage and aggregated errors are shown, using both geometric
and structural distances. Our method benefits from the consistency of delta distributions, resulting in an improved performance.

N g chair table furniture avg.

Egeo
q / Egeo

c / Egeo
qc

Identity 0.846 / 0.976 / 1.822 0.789 / 0.974 / 1.763 0.704 / 0.980 / 1.684 0.780 / 0.977 / 1.756
StructureNet-0.2 0.826 / 0.934 / 1.760 1.008 / 1.068 / 2.076 0.735 / 0.891 / 1.626 0.856 / 0.964 / 1.821
StructureNetEdge-0.2 0.838 / 0.942 / 1.781 1.127 / 1.197 / 2.324 0.766 / 0.932 / 1.698 0.910 / 1.024 / 1.934
StructureNet-0.5 0.857 / 0.865 / 1.722 1.092 / 0.975 / 2.068 0.744 / 0.815 / 1.558 0.898 / 0.885 / 1.783
StructureNetEdge-0.5 0.863 / 0.874 / 1.737 1.127 / 1.052 / 2.178 0.775 / 0.869 / 1.644 0.922 / 0.931 / 1.853
StructureNet-1.0 0.940 / 0.828 / 1.768 1.270 / 0.918 / 2.189 0.789 / 0.765 / 1.554 1.000 / 0.837 / 1.837
StructureNetEdge-1.0 0.933 / 0.832 / 1.765 1.168 / 0.987 / 2.156 0.816 / 0.810 / 1.626 0.973 / 0.877 / 1.849
StructEdit (Ours) 0.789 / 0.804 / 1.593 0.834 / 0.821 / 1.655 0.806 / 0.755 / 1.561 0.810 / 0.793 / 1.603

Est
q / Est

c / Est
qc

Identity 0.281 / 1.000 / 1.281 0.215 / 1.000 / 1.215 0.288 / 1.000 / 1.288 0.261 / 1.000 / 1.261
StructureNet-0.2 0.300 / 0.781 / 1.081 0.248 / 0.630 / 0.878 0.316 / 0.698 / 1.015 0.288 / 0.703 / 0.991
StructureNetEdge-0.2 0.318 / 0.789 / 1.108 0.352 / 0.763 / 1.115 0.313 / 0.667 / 0.980 0.328 / 0.740 / 1.068
StructureNet-0.5 0.324 / 0.547 / 0.871 0.284 / 0.445 / 0.729 0.314 / 0.559 / 0.873 0.307 / 0.517 / 0.824
StructureNetEdge-0.5 0.343 / 0.555 / 0.898 0.332 / 0.585 / 0.918 0.313 / 0.516 / 0.829 0.330 / 0.552 / 0.882
StructureNet-1.0 0.388 / 0.363 / 0.751 0.347 / 0.321 / 0.667 0.336 / 0.390 / 0.726 0.357 / 0.358 / 0.715
StructureNetEdge-1.0 0.408 / 0.372 / 0.780 0.348 / 0.405 / 0.753 0.335 / 0.382 / 0.717 0.364 / 0.386 / 0.750
StructEdit (Ours) 0.299 / 0.259 / 0.559 0.299 / 0.225 / 0.524 0.518 / 0.223 / 0.741 0.372 / 0.236 / 0.608

N s chair table furniture avg.

Egeo
q / Egeo

c / Egeo
qc

Identity 0.651 / 0.978 / 1.629 0.499 / 0.980 / 1.479 0.467 / 0.980 / 1.446 0.539 / 0.979 / 1.518
StructureNet-0.2 0.557 / 0.751 / 1.308 0.501 / 0.707 / 1.208 0.450 / 0.793 / 1.243 0.502 / 0.750 / 1.253
StructureNetEdge-0.2 0.564 / 0.754 / 1.318 0.549 / 0.782 / 1.331 0.458 / 0.772 / 1.231 0.524 / 0.769 / 1.293
StructureNet-0.5 0.571 / 0.670 / 1.241 0.516 / 0.587 / 1.103 0.451 / 0.684 / 1.135 0.513 / 0.647 / 1.160
StructureNetEdge-0.5 0.575 / 0.675 / 1.250 0.549 / 0.660 / 1.209 0.458 / 0.674 / 1.132 0.527 / 0.670 / 1.197
StructureNet-1.0 0.611 / 0.621 / 1.232 0.548 / 0.509 / 1.057 0.456 / 0.561 / 1.017 0.538 / 0.564 / 1.102
StructureNetEdge-1.0 0.606 / 0.624 / 1.230 0.551 / 0.572 / 1.123 0.463 / 0.570 / 1.032 0.540 / 0.589 / 1.129
StructEdit (Ours) 0.581 / 0.637 / 1.218 0.501 / 0.499 / 1.000 0.521 / 0.494 / 1.015 0.534 / 0.543 / 1.078

Est
q / Est

c / Est
qc

Identity 0.437 / 1.000 / 1.437 0.303 / 1.000 / 1.303 0.442 / 1.000 / 1.442 0.394 / 1.000 / 1.394
StructureNet-0.2 0.693 / 0.773 / 1.466 2.218 / 1.267 / 3.484 0.598 / 0.816 / 1.414 1.169 / 0.952 / 2.121
StructureNetEdge-0.2 0.805 / 0.845 / 1.650 2.944 / 1.792 / 4.736 0.653 / 0.853 / 1.506 1.467 / 1.163 / 2.631
StructureNet-0.5 0.888 / 0.485 / 1.373 2.518 / 0.781 / 3.300 0.613 / 0.590 / 1.204 1.340 / 0.619 / 1.959
StructureNetEdge-0.5 0.993 / 0.540 / 1.534 2.793 / 1.208 / 4.002 0.692 / 0.627 / 1.319 1.493 / 0.792 / 2.285
StructureNet-1.0 1.413 / 0.350 / 1.763 3.099 / 0.523 / 3.622 0.750 / 0.417 / 1.167 1.754 / 0.430 / 2.184
StructureNetEdge-1.0 1.516 / 0.392 / 1.908 3.047 / 0.792 / 3.839 0.821 / 0.478 / 1.298 1.794 / 0.554 / 2.348
StructEdit (Ours) 0.323 / 0.286 / 0.609 0.271 / 0.180 / 0.451 0.454 / 0.222 / 0.676 0.349 / 0.229 / 0.579

of interpolations between different edits. The examples show
that both geometric and structural changes are interpolated
smoothly.

C.5. Edit Transfer on the Synthetic Dataset

Qualitative results comparing StructEdit to StructureNet
for edit transfer on the synthetic dataset are shown in Fig-
ure 6. The edit that transforms source shape A into the
modified shape (first two columns) is transferred to source
shape B (third column). On the synthetic dataset, we have
a ground truth for the result of the edit transfer, shown in
the fourth column. StructEdit (SE, last column) explicitly
encodes edits, and can thus benefit from the large degree of
consistency between the neighborhoods of deltas around dif-
ferent source shapes, giving us a significantly more accurate
edit transfer than than StructureNet (SN). Note that we do
not use the ground truth transferred edit during training. We
do not use any kind of supervision for the mapping between
the shape deltas of different source shapes. Our intuition is
that the increased accuracy of the edit transfer is a result of

tendency of networks to compress information in their latent
space. Due to the consistency of the shape deltas around
different source shapes in our datasets, a consistent layout
of shape deltas in the latent spaces around different source
shapes is the layout that uses the least amount of information.
A similar effect is observed in several other unsupervised
methods [5, 4].

D. Implementation Details

In the following, we give additional details for the Struc-
tureNet baseline, and for two applications shown in the main
paper: editing raw point clouds and cross-modal analogies.

D.1. StructureNet Baseline

StructureNet learns a latent space of shapes (as opposed
to shape edits), where we use simple arithmetics to transfer
edits. We compare the result of our edit transfer: S′

l =
Sk +d(Sk, e(Si,∆Sij)) to the following edited shape in the
StructureNet baseline:
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Figure 6. Edit Transfer on the synthetic dataset. Edits from
source shape A are transferred to source shape B. Our edits (SE)
more faithfully recover the ground truth modified shape.

SSN
l = dSN

(
eSN (Sk) +

(
eSN (Sj) − eSN (Si)

))
, (1)

where in both ours and the StructureNet baseline, the edit is
transferred from source shape Si to source shape Sk, result-
ing in shape Sl. Here, eSN and dSN denote the StructureNet
encoder and decoder. Unlike our method, the difference
vector in latent space eSN (Sj)− eSN (Si) is not encouraged
to represent a semantically similar edit when applied to dif-
ferent source shapes, which results in the lower performance
we can see in our experiments (Figures 3, 4 and 5 of the
main paper). Alternative data-driven edit transfer methods
typically use the same latent space arithmetics, but cannot
handle structure.

D.2. Generating Edits of Raw Point Clouds

In this application, we transform the point cloud into a
structured shape using an existing method, find variations
for the structured shape, and then transfer the corresponding
shape deltas back to modify the point cloud. For the transfor-
mation into a shape, we first perform panoptic segmentation
using the method described in PartNet [3], giving us part
semantic and instance labels for each point. The semantics
allow us to create a hierarchy among the part instances, and
the instance labels give us part bounding boxes. After an
edit, point cloud segments can either be transformed with
the bounding box modifications or deleted, depending on
the modification of the corresponding part. Added parts
are transformed back into a point cloud by sampling their
surface with a fixed number of points.

D.3. Cross-modal Analogies

To transfer an edit defined by a pair of images to a point
cloud, both images are transformed into structured shapes
using the method described in StructureNet [2]: an encoder
maps the images into the latent space of a pre-trained Struc-
tureNet. Once we have structured shapes for both images,

we use their difference as shape delta. This delta is then
transferred to the shape obtained from the point cloud us-
ing our learned latent space. The conversion between point
clouds and shapes is handled as described in the previous
application.
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