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1. Derivation of Direction Regularization
Following the motivation presented in Section 3.2 of the

main manuscript where we state our objective of having the
negative sample move in a direction orthogonal to both the
anchor and positive samples, we require:
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Since we know that NC = fc − fn and PA = fa − fp

from Fig. 3, we want
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Expanding using the distributive laws of the inner prod-
uct, we get:
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Now, since fc is the midpoint of the displacement vector
PA = fa − fp, it will be perpendicular to PA and so,
fc · (fa − fp) = 0. This zeroes out the first half of the
above equation, resulting in:
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Since the dot product is homogeneous under scaling, we
can rewrite the above equation as:

1
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1

‖fa − fp‖
(fn · [fa − fp]) = 0

=⇒ fn · fa − fn · fp = 0

which finally gives us Eq. 7 in Section 3.2 of the main
manuscript. Adding and subtracting fa · fa − fp · fa (note
that fa · fa = 1), we get

(fn − fa) · (fp − fa) = 1− fp · fa (6)

Now, we know that

Cos(AN,AP ) = Cos(fn − fa,fp − fa)

=
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Therefore, we arrive at:

Cos(AN,AP ) =
1− fp · fa

‖fn − fa‖‖fp − fa‖
(8)

This equation represents the optimal condition we desire
to achieve. Hence, we find that minimizing this equation
helps achieve the effect we are seeking with respect to hav-
ing the negative embedding be orthogonal to both anchor
and positive samples.

2. Derivation of Gradient Dynamics for Triplet
Pair

Considering a triplet of samples comprising only of the
anchor, positive and negative, we would like to analyze the
effect of the gradient on the positions of the samples in the
embedding space. We start with the triplet loss formulation
including the direction regularization:

Lapn =‖fa − fp‖2 − ‖fa − fn‖2 + α

− γ Cos(fn − fa,fp − fa)

=⇒ Lapn =‖fa − fp‖2 − ‖fa − fn‖2 + α

− γ 1− fp · fa

‖fn − fa‖‖fp − fa‖

(9)

Computing gradients with respect to the anchor embed-
ding fa, we get:



Figure 1: Visualization of DR-MS feature embedding of CUB-200-2001 (class 101 to 200; 5,924 images) using Barnes-Hut
t-SNE. Various clusters are zoomed in for viewing and this figure is best viewed in color.
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Assigning c = (‖fn − fa‖‖fa − fp‖)−1, d = ‖fn −
fa‖−2 and k = ‖fn − fa‖−1‖fa − fp‖, we can simplify
the gradient to:
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= 2(fn − fp)− γc (fa − fp)− γdk(fn − fa) (11)

Similarly, we now compute the gradients with respect to
the positive sample fp:
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Using the same assignments for c, d, and k, we get
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Computing the gradients with respect to the negative
sample fn yields:
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=⇒ ∂L
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= 2(fa − fn)− γc d (fa − fn) (15)



Figure 2: Qualitative results for top-5 recall on the In-Shop Clothes Retrieval dataset comparing the proposed DR-MS loss
performance with MS-Loss. Images with a red border indicates the true positive gallery image for the given query image.
As observed, DR-MS loss is able to correctly identify the mated gallery image for the requested query image in its top-5
candidate results as compared with MS loss.

Table 1: Study on the variation in performance on Caltech-
UCSD CUB-200-2011 with respect to the embedding size
employed.

Recall@K (%) 1

64 59.1
128 60.7
256 62.1
512 66.1

Which gives us the three gradients required to analyze
their effects on the existing embedding positions. The re-
mainder of the discussion follows in the main manuscript in
Section 3.2

3. Embedding Size vs Performance
We analyse the performance variation of the metric

learning system incorporated with direction regularization
with respect to different embedding sizes. We use direction
regularized MS-Loss for our experiment. We fix the batch
size to 80 and use a learnable γ. The network and rest of
hyper-parameters remains same as mentioned in the exper-
iment section (§4). We report Recall@1 for the Caltech-
UCSD CUB-200-2011. From Table 1 we note that the per-
formance increases as the embedding dimension goes up.
This is expected as higher dimensional features tend to have
higher discriminative power. Importantly, we can observe
that addition of the regularization term has not caused the

performance variation behavior to have deviated from that
of the original non-regularized formulation of the loss. This
shows the versatility of the regularization term in how it can
complement any metric learning loss without degrading its
performance.


