
Appendix A. Proof of Input Refinement
Theorem A.1. If we can verify that a set S of perturbed
versions of an image x are correctly classified for a threat
model using one certification cycle (one pass through the
algorithm sharing the same linear relaxation values), then
we can verify that every perturbed image in the convex hull
of S is also correctly classified, where we take the convex
hull in the pixel space.

Proof. When a set S of perturbed inputs and a neu-
ral network fNN are passed into a verifier, it produces
AL, bL, AU , bU such that for all y ∈ S

AL · y + bL ≤ fNN (y)j ≤ AU · y + bU (11)

Claim A.2. We claim that if y, z ∈ S, then x = y+z
2 satisfies

the above inequality.

Proof. We can prove this by induction on the layers. For the
first layer we see that as matrix multiplication and addition
are linear transformations, we have that x1 = W1 ·x+b1 lies
between the points y1 = W1 · y + b1 and z1 = W1 · z + b1.
The important property to note here is that every co-ordinate
of x1 lies in the interval between the co-ordinates of y1 and
z1. Now, we see that the activation layer is linear relaxed
such that A1

L · y + B1
L ≤ Act(y) ≤ A1

U · y + B1
U for all

values of y between the upper and lower bound for a neuron.
As we proved before every pixel of x lies within the bounds
and hence satisfies the relation.

For the inductive case, we see that given that x satisfies
this relation up till layer l, then we have that

AlL · x+ blL ≤ f lNN (x)j ≤ AlU · x+ blU (12)

where f lNN (x)j gives the output of the jth neuron in layer l
post-activation.

Now, we see that as we satisfy the above equation, the
certification procedures ensure that the newly computed pre-
activation values satisfy the same condition. So, we have

A
l+1/2
L · x+ b

l+1/2
L ≤ f

l+1/2
NN (x)j ≤ Al+1/2

U · x+ b
l+1/2
U

where we use l + 1/2 to denote the fact that this is a
pre-activation bound. Now, if we can show that our value
lies within the range of the output of every neuron, then
we prove the inductive case. But then we see that as these
A
l+1/2
L ·x+b

l+1/2
L is a linear transform xl+1/2 = A

l+1/2
L ·x+

b
l+1/2
L lies between the points yl+1/2 = A

l+1/2
L · y+ b

l+1/2
L ,

zl+1/2 = A
l+1/2
L ·z+b

l+1/2
L . So, we see that the values taken

by this is lower bounded by the corresponding value taken
by at least one of the points in S. Similarly we can prove
it for the upper bound. Then, we can use the fact that the
linear relaxation gives valid bounds for every values within
the upper and lower bound to complete the proof. So, we
have that

Al+1
L · x+ bl+1

L ≤ f l+1
NN (x)j ≤ Al+1

U · x+ bl+1
U (13)

Then we see that the verifier only certifies the set S to be
correctly classified if for all y ∈ S

(AUj · y + bUj ) ≤ (ALc · y + bLc )

Now, we see that from the equation above that if z ∈
conv(S), then we have that z =

∑n
i=1 aixi, where xi ∈ S

and
∑n
i=1 ai = 1, ai ≥ 0. Then using the above claim we

see that

(fNN (z))j ≤ (AUj · z + bUj )

= (AUj ·
n∑
i=1

(aixi) + bUj )

=

n∑
i=1

ai(A
U
j · xi + bUj )

≤
n∑
i=1

ai(A
L
c · xi + bLc )

= (ALc ·
n∑
i=1

(aixi) + bLc )

= (ALc · z + bLc )

≤ (fNN (z))c

Remark A.3. For some non-convex attack spaces embed-
ded in high-dimensional pixel spaces, the convex hull of the
attack space associated with an image can contain images
belonging to a different class (an example of rotation is illus-
trated in Figure 3). Thus, one cannot certify large intervals
of perturbations using a single certification cycle of linear
relaxation based verifiers.

Figure 3: Convex Hull in the Pixel Space

Proof for Figure 3. Consider the images given in Figure 3,
denote them as x1, x2, x3 and x3 = x1+x2

2 by construction.



We can observe that for an ideal neural network f , we ex-
pect that f classifies x1, x2 as 3 and classifies x3 as 8. Now,
we claim that for this network f , it is not possible for a
linear-relaxation based verifier to verify that both x1, x2 are
classified as 3 using just one certification cycle. If it could,
then we have by Theorem A.1 that we would be able to
verify it for the point x3 = x1+x2

2 . However, we see that
this is not possible as f classifies x3 as 8. Therefore, we
need the verification for x1 and for x2 to belong to different
certification cycles making input-splitting necessary.



Appendix B. Input Space Splitting

(a) Explicit Splitting

(b) Implicit Splitting

Figure 4: Illustration of refinement techniques.

Figure 4 illustrates the difference between explicit and
implicit input space splitting. In Figure 5a, we give the form
of the activation function for rotation. Even in a small range
of roation angle θ (2◦), we see that the function is quite
non-linear resulting in very loose linear bounds. Splitting the
images explicitly into 5 parts and running them separately
(i.e. explicit splitting as shown in Figure 5b) gives us a much
tighter approximation. However, explicit splitting results in
a high computation time as the time scales linearly with
the number of splits. In order to efficiently approximate this
function we can instead make the splits to get explicit bounds
on each sub-interval and then run them through certification
simultaneously (i.e. implicit splitting as shown in Figure 5c).
As we observe in Figure 5c, splitting into 20 implicit parts
gives a very good approximation with very little overhead
(number of certification cycles used are still the same).

Table 5 gives a more detailed overview of the effect of
implicit splitting. For a large explicit split interval size, we
see that using a lot of implicit splits allows us to certify
larger radius. However, we also see a pattern that beyond a
point adding more implicit splits does not give better bounds.
Using implicit splits still results in a single certification
cycle. By theorem A.1 we see certifying this relaxation is a
harder problem than certifying all the rotated images. This
could explain the reason we are unable to certify big explicit
interval even after using a large number of implicit splits.

Table 5: Evaluation of averaged certified bounds for rotation
space perturbation on MNIST MLP 3× 1024 and 10 images.
The results demonstrate the effectiveness of implicit splits.

Explicit Split
Interval Size

Number of
Implicit Splits

1 5 8 10 15 20
Experiment (II): Rotations

0.3 0.27 50.0 50.09 50.12 50.18 50.24
0.5 0.0 40.0 50.0 50.0 50.1 50.2
0.8 0.0 40.0 40.0 40.1 50.0 50.0
1.0 0.0 30.2 40.0 40.0 50.0 50.2
1.2 0.0 10.6 40.0 40.0 40.0 50.0
1.5 0.0 0.0 30.15 40.0 40.0 40.0
2.0 0.0 0.0 0.4 30.0 40.0 40.0
3.0 0.0 0.0 0.0 0.0 0.9 30.0

(a) Without splitting the input range

(b) Explicitly splitting the input (5 divisions)

(c) Implicitly splitting the input (20 divisions)

Figure 5: Bounds for activation function of SP layer in
rotation



Appendix C. Additional Experimental Results

Table 6: Additional results of Table 2

Network Certified Bounds Ours Improvement (vs Weighted) Attack
Naive Weighted SPL SPL + Refine w/o refine w/ refine Grid

Experiment (I)-A: Hue
CIFAR, MLP 5 × 2048 0.00489 0.041 0.370 1.119 8.02x 26.29x 1.449
Experiment (I)-B: Saturation
CIFAR, MLP 5 × 2048 0.00286 0.007 0.119 0.325 16.00x 45.42x 0.346
Experiment (I)-C: Lightness
CIFAR, MLP 5 × 2048 0.00076 0.001 0.059 0.261 58.00x 260.00x 0.276

Table 7: Additional result of Table 3

Network Certified Bounds (degrees) Attack (degrees)
Number of Implicit Splits SPL + Refine Grid Attack

1 implicit
No explicit

5 implicit
No explicit

10 implicit
No explicit

100 implicit +
explicit intervals of 0.5◦

Experiment (II): Rotations
MNIST, MLP 4× 1024 0.256 0.644 1.129 46.63 48.75
MNIST, MLP 3× 1024 0.486 1.177 1.974 48.47 49.76
MNIST, CNN 4 × 5 0.437 0.952 1.447 49.20 54.61


