A. Supplementary material

We provide additional material to supplement our main
submission. In particular, the following aspects are covered:

e DeepLPF parameter prediction block architecture
(Section A.1)

o DeepLPF multiple filter fusion architecture (Sec-
tion A.2)

e Visualisation of learnable inversion for the graduated
filter (Section A.3)

e Additional qualitative visual results (Section A.4)

A.1. DeepLPF parameter prediction block archi-
tecture

Figure 8 presents the architecture of the DeepLPF pa-
rameter prediction network. The network accepts from
the backbone feature extraction neural network (e.g. a U-
Net [21]) a feature map of dimension H xW xC, where H
is the height, W is the width and C' is the channel count.
The extracted features are passed through an alternating se-
ries of convolution and maxpooling blocks, followed by a
global average pooling and fully connected layer. Leaky
ReLUs serve as the activation functions and dropout is em-
ployed before the fully connected layer (applied 50% at
both training and test time). We show in Figure 11 the U-
Net backbone feature extraction network we use for experi-
ments on the MIT-Adobe-5K-DPE dataset.

A.2. DeepLPF multiple filter fusion architecture

Figure 9 presents the filter fusion architecture, which re-
ceives the scaling maps of multiple filters of the same type
(here we show elliptical filters but the same architecture is
used for graduated filters) and combines the filters through
multiplication into a single scaling map to be applied to the
input image to yield the enhanced image.

A.3. Visualisation of learnable inversion for the
graduated filter

Table 5 presents results for the graduated filter with and
without learnable inversion. Inversion determines where the
100% scaling factor area of the filter is located with respect
to the central line of the graduated filter. We find in Ta-
ble 5 that PSNR and SSIM both benefit by permitting this
additional filter flexibility.

Figure 10 shows two heatmaps illustrating the effect of
learnable inversion on shifting the location of the 100%
scaling area of the graduated filter with respect to the central
line.
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Figure 9: Fusion architecture for several instances of the
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Figure 10: Learnable inversion for the graduated filter. The
learnable binary indicator variable g;,,,, determines the posi-
tion of the 100% scaling area of the graduated filter relative
to the central line. In heatmap (a) the 100% area is towards
the left whereas in (b) the 100% area is towards the right.

Table 5: Image quality can be further improved by enabling
inversion of the graduated filter. See Section 3.2.2

Architecture
Graduated filter (no inversion)
Graduated filter (inversion)

PSNRT SSIM™
2252 0.878
2264  0.888

A.4. Additional visual examples

Further filter visualizations, output image examples from
DeepLPF and the baseline models on the SID, MIT-Adobe-
5K-DPE and MIT-Adobe-5K-UPE datasets are presented in
Figures 12-20:

o Figure 12: Comparison between DeepLPF and Deep-
UPE [25] on sample images from the MIT-Adobe-5K-
UPE dataset.
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Figure 8: Filter Parameter regression architecture of DeepLPF. Given features from a backbone network (e.g. Figure 11), the
parameter regression network infers the parameters of the parametric filters (polynomial, elliptical, or graduated).

Figure 13: Additional qualitative comparison between
DeepLPF and DPE [8] on sample images of the MIT-
Adobe-5K-DPE dataset.

Figure 14: Additional qualitative comparison between
U-Net [21] and DeepLPF on sample images from the
MIT-Adobe-5K-DPE dataset.

Figure 15: Additional visual results from the
MIT-Adobe-5K-DPE dataset comparing DeepLPF to
DPE[8], CLHE[35], DPED (iphone7)[ 1 3], NPEA[33],
FLLF[34]

Figure 16: Additional visual results from the
MIT-Adobe-5K-DPE dataset comparing DeepLPF to
DPE[8], CLHE[35], DPED (iphone7)[ 3], NPEA[33],
FLLF[34]

Figure 17: Qualitative comparison between DeepLPF
and SID [4] architecture on sample images of the Fuji
partition of the SID dataset.

Figure 18: Ablation study showing the effect of differ-
ent combinations of parametric filter compared to the
groundtruth and the baseline U-Net [21] on the MIT-
Adobe-5K-DPE dataset.

Figure 19: Additional examples of elliptical filters act-
ing on different channels of the input images.

Figure 20: Additional examples of mixtures of gradu-
ated or elliptical filters acting on different channels of
the input images.

Figure 21: Additional examples of polynomial (cubic-
10) filters acting on different channels of the input im-
ages.

Figure 22: Examples of DeepLPF failure cases.
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Figure 11: U-Net backbone feature extraction network used for the MIT-Adobe-5K-DPE dataset. The RGB image data is
input on the left and the features for input to the DeepLPF block are output on the right.



DeepUPE [25] Ground Truth

Figure 12: Additional qualitative comparison between DeepLPF and DeepUPE on sample images from the MIT-Adobe-
SK-UPE dataset.




Input DPE [£] DeepLPF Ground Truth

Figure 13: Additional qualitative comparison between DeepLPF and DPE [8] on sample images of the MIT-Adobe-5K-
DPE dataset.



Input U-Net [21] DeepLPF Ground Truth

Figure 14: Additional qualitative comparison between U-Net [21] and DeepLPF on sample images from the MIT-Adobe-
5SK-DPE dataset.
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Figure 15: Additional visual results from the MIT-Adobe-SK-DPE dataset comparing DeepLPF to DPE [8], CLHE [35],
DPED (iphone7) [13], NPEA [33], FLLF [34]
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Figure 16: Additional visual results from the MIT-Adobe-SK-DPE dataset comparing DeepLPF to DPE [8], CLHE [35],
DPED (iphone7) [13], NPEA [33], FLLF [34]



SID [4] DeepLPF Ground Truth

Figure 17: Qualitative comparison between DeepLPF and SID [4] on sample images of the Fuji partition of the SID dataset.




(a) Input (b) U-Net (c) U-Net+Elliptical

(d) U-Net+Graduated (e) U-Net+Elliptical+Graduated (f) U-Net+Cubic

(g) U-Net+Cubic+Elliptical+Graduated (h) Ground Truth

Figure 18: Ablation study showing the effect of different combinations of parametric filter compared to the groundtruth and
the baseline U-Net [21] on the MIT-AdobeSK-DPE dataset. All cubic filter results are using the 20 parameter per channel
cubic filter (cubic-20).
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Figure 19: Additional examples of elliptical filters acting on different channels of the input images (from top; 1st row: Green,
2nd row: Blue, 3rd row: Red, 4th row: Red). Left: Examples of estimated filters. Right: The produced output images.
Lighter filter heat map colours correspond to larger image adjustment values. Best viewed in colour.



Figure 20: Additional examples of mixtures of graduated or elliptical filters acting on different channels of the input
images (from top; lst row: Green, 2nd row: Green, 3rd row: Red, 4th row: Blue). Left: Examples of estimated filters.
Right: The produced output images. Top two rows are mixtures of graduated filters. Bottom two rows are mixtures of
elliptical filters. Lighter filter heat map colours correspond to larger image adjustment values. Best viewed in colour.
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Figure 21: Additional examples of the cubic-10 filter acting on different channels (from top; Ist row: Blue, 2nd row: Red,
3rd row: Blue, 4th row: Blue) of the input images. Left: Examples of estimated filters. Right: The produced output images.
Lighter filter heat map colours correspond to larger image adjustment values. Cubic-10 filter is shown without the intensity
(¢) term. Best viewed in colour.



Input DeepLPF Ground Truth

Figure 22: Example images showing some DeepLPF failure cases with respect to the groundtruth. Top: It can be observed
from the training set distribution that our model has likely learned to brighten human faces. The transformation between the
input and groundtruth in this example is uncommon in the MIT-Adobe-5K dataset as artists generally lighten human faces.
We note, however, that DeepLPF has removed the reddish colour cast from the input. Bottom: Here Artist C increases the
saturation of the green hue, however DeepLPF fails to match the same level of saturation. This could be addressed by learning
the filters in the Hue-Saturation-Value (HSV) colour space, in which the saturation for a particular hue could be precisely
adjusted.



