
Figure 1. Results of our method applied under a heteroskedastic
noise model with α = β = 0.05

Figure 2. Results of our method applied under a heteroskedastic
noise model with α = β = 0.2.

A. Intensity-Dependent Heteroskedastic Noise
Real photographic noise is not typically purely additive.

Instead, the magnitude of the noise at each pixel is cor-
related with the intensity of the clean image at that pixel.
In this Appendix, we present an analysis of how this phe-
nomenon affects our method. In particular, we consider a
noise model where Y = X + A �X + B where A and B
have the same shape as X , A ∼ N (0, α2), B ∼ N (0, β2)
and ‘�’ indicates pixel-wise multiplication. Note that the
noise term is now A�X +B and is dependent on X .

If we are able to draw a second noise sample from the
same distribution, our previous analysis applies with mini-
mal changes. Let our doubly-noisy image be Z = X+A�
X +B +C �X +D, where C and D are drawn from the
same distributions as A and B, respectively. Following the
same reasoning as in Section 3.2, we have:

E[Y |Z] = X +
A+ C

2
�X +

B +D

2

Performing the same manipulation as before, we take:

2E[Y |Z] = 2X + (A+ C)�X + (B +D)

Method PSNR SSIM
Noisy 25.31 0.552
Ours 33.51 0.907

Noise2Noise 34.98 0.924
Table 1. PSNR and SSIM comparison under a heteroskedastic
noise model with α = β = 0.05.

2E[Y |Z]− Z = X

We thereby recover an estimate of the clean image using
exactly the same procedure as in the case of purely additive
noise. However, this analysis relies on our ability to draw a
second noise sample from the same distribution as the first.
This in turn requires us to have access to the clean imageX ,
which is very likely unrealistic. Instead, we only have ac-
cess to the noisy image, Y . We can attempt to approximate
this second noise sample by instead using Y to compute the
intensity-dependent component. This yields:

Z = X +A�X +B + C � (X +A�X +B) +D

= X +A�X +C �X +C �A�X +B +D+C �B

In our original analysis, we made use of the fact that
E[N |Z] = E[M |Z]. In this setting, however, A and C
are no longer exactly symmetric, nor are B and D, due
to the presence of the C � B term without a correspond-
ing A � D term. However, as long as the magnitude of
the noise is relatively small, this extraneous term will be
very small, as it is the pointwise product of two noise sam-
ples. Thus, we have E[A|Z] ≈ E[C|Z] and similarly for B
and D, where the tightness of the approximation depends
on the magnitude of the noise. We can therefore estimate
E[A|Z] ≈ E[A|Z]+E[C|Z]

2 and E[C|Z] ≈ E[A|Z]+E[C|Z]
2 , and

similarly for B and D.
Using these approximations, we can compute (omitting

expectations on the right-hand side for brevity):

E[Y |Z] ≈ X +
A+ C

2
�X +

B +D

2

+
(A+ C)2
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(1)

Applying our correction step, we get:

2E[Y |Z]− Z ≈ X +
(A+ C)2

2
·X

+
(A+ C)� (B +D)

2

(2)

In other words, our reconstruction will still have remain-
ing noise, with both an intensity dependent term and a
purely additive term. However, both of these terms con-
tain a pointwise product of noise samples, and thus have
significantly lower magnitude than the original noise.
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To quantitatively evaluate the performance of our
method in this scenario, we consider a noise model with
α = β = 0.05. In other words, this model consists of a
purely additive component with σ = 0.05 and an intensity-
dependent component with 0 ≤ σ ≤ 0.05.

Table 1 shows the PSNR and SSIM metrics for our
method and Noise2Noise under this noise model. Note that
unlike the experiments in the main text, we here train a
Noise2Noise model from scratch on this specific noise dis-
tribution. Just as in the case of purely additive noise, our
method is about 1.5dB worse than N2N. It may be possible
to close this gap somewhat by deriving an analogue of the
improvement described in Section 3.3.

Figure 1 shows an example of our method trained using
this noise model. We note that the result is qualitatively
similar to that acheived in the purely additive setting, in line
with the metrics reported in Table 1.

By contrast, Figure 2 shows the results obtained when
α = β = 0.2. Here the noise magnitude is quite severe. As
a consequence, the remaining noise term in Equation 2 is
also large. When zoomed in, this remaining noise is clearly
visible. Although the approximations made in deriving the
correction step lead to subtle artifacts, our method still pro-
duces a significant improvement over the noisy image.
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