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This supplementary document first presents the architec-
ture of our model without semantic phrase extraction (i.e.,
LGI-SQAN) used for in-depth analysis on the local-global
video-text interactions. We also present additional qualita-
tive examples of our algorithm.

1. Architectural Details of LGI-SQAN

Compared to our full model (LGI), LGI-SQAN does
not explicitly extract semantic phrases from a query as pre-
sented in Fig. A; it performs local-global video-text interac-
tions based on the sentence-level feature representing whole
semantics of the query.

In our model, the sentence-level feature (q) is copied
to match its dimension with the temporal dimension (1)
of segment-level features (S). Then, as done in our full
model, we perform local-global video-text interactions—1)
segment-level modality fusion, 2) local context modeling,
and 3) global context modeling—followed by the tempo-
ral attention based regression to predict the time interval
[t%,t¢]. Note that we adopt a masked non-local block or
a residual block for local context modeling, and a non-local
block for global context modeling, respectively.

2. Visualization of More Examples

Fig. B and Fig. C illustrate additional qualitative results
in the Charades-STA and ActivityNet Captions datasets,
respectively; we present two types of attention weights—
temporal attention weights o (T-ATT) and query attention
weights a (Q-ATT)—and predictions (Pred.). T-ATT shows
that our algorithm successfully attends to relevant segments
to the input query while Q-ATT depicts that our sequen-
tial query attention network favorably identifies semantic
phrases from the query describing actors, objects, actions,
etc. Note that our model often predicts accurate time inter-
vals even from the noisy temporal attention.

Fig. D demonstrates the failure cases of our algorithm.
As presented in the first example of Fig. D, our method fails
to localize the query on the confusing video, where a man
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Figure A. Tllustration of architecture of LGI-SQAN. In LGI-
SQAN, we use sentence-level feature q to interact with video.

looks like smiling at multiple time intervals. However, note
that the temporal attention of our method captures the seg-
ments relevant to the query at diverse temporal locations in
a video. In addition, as presented in the second example
of Fig. D, our model sometimes fails to extract proper se-
mantic phrases; ‘wooden’ and ‘floorboards’ are captured at
different steps although ‘wooden floorboards’ is more natu-
ral, which results in the inaccurate localization.
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Figure B. Qualitative results of our algorithm on the Charades-STA dataset. T-ATT and Q-ATT stand for temporal attention weights and
query attention weights, respectively.
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Figure C. Qualitative results of our algorithm on the ActivityNet Captions dataset. T-ATT and Q-ATT stand for temporal attention weights
and query attention weights, respectively.
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Figure D. Failure case of our algorithm. Examples in the first and second row are obtained from the Charades-STA and Activity Captions
datasets, respectively.



