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1. Overview

The supplementary material is organized as follows. In Section 2] we showed some ablation studies on the design of
dual-path Unet for predicting correction term, motivated from TLS-based formulation of the problem. Then the visualization
of correction term w for some example is given. In Section |3} more experiments are conducted for better understanding of
our proposed methods. Next, Sectiond]showed the visual comparison of more real images without ground truth. Section[3]is
devoted to visual comparison of some synthetic images with ground truths.

2. Additional study and visualization on DP-Unet for predicting correction term

Discussion on dual inputs for DP-Unet Based on the EIV model, The prediction on correction term is determined by two
terms: the residual r(*) = y — k ® £® and the estimate z(*). These two inputs are combined after down-sampling by the
proposed DP-Unet module. See Section 3.3 and Fig 2 in main paper for the architecture.

In the work proposed in [2], their model also contains a ¢;-norm-regularized term for representing correction term. How-
ever, the estimate of such a term is only dependent on the residual. In contrast, ours depends on both the residual and current
estimate . An ablation study is conducted to check whether 2(*) is important to the prediction as our mathematical formu-
lation indicated. See Table 1| for such a comparison on the DP-Unet and the same NN but with the path related to (*) being
removed. It showed that the DP-Unet with dual inputs does not shows large improvement on Levin et al. [7] whose kernel
error is small, and show large improvement on Lai ef al.’s dataset whose kernel error is much larger. This study justifies the
need for dual-path of the UNet which takes as the input both the residual ) = 4 — k ® 2® and the estimate z(*).
Visualization of learned correction term  See Fig. [T|2|for the visualization of learned correction terms u of one example,
in comparison with ground truth correction term Ak ® . It can be seen that learned correction term really indicates the
property of ground truth correction term, which verifies that our proposed DP-UNet is able to reduce the negative affect of
erroneous kernels in non-blind deconvolution scheme.

Table 1: Average PSNR(dB)/SSIM of deblurring results for DP-Unet with single input » vs dual inputs » + .

Levin et al. m 6] o] K]
Tnput 7 30.98/0.90 31.06/0.92 34.61/0.96 33.30/0.94
Input + | 30.92/0.90 31.14/0.92 34.66/0.96 33.36/0.94
Sun ef al. ] i) (€]
Tnput r 31.85/0.92 32.57/0.93 31.40/0.90
Inputr + = | 32.12/0.92 32.76/0.93 31.60/0.90
Lai et al. i) 7 K] W]
Input r 24.27/0.80 23.88/0.79 24.30/0.79 22.88/0.75
Inputr +x | 24.81/0.81 24.46/0.80 24.78/0.80 23.22/0.76

3. Additional Studies on the proposed algorithm.

Evaluation on the ground truth kernels Our proposed deblurring method aims to tackle on deblurring with kernel/model
errors. But it is interesting to check its performance when kernels are perfect. Table[2]shows such experiments in comparison
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Figure 1: Visualization of the output of DP-Unet w in Stage S4 of one example, in comparison with the ground truth correction term

Ak ® x. (a) Ground truth kernel. (b) Noisy kernel. (c) Sharp image x. (d) Blurry image y. (¢) Recovered image &. (f) Ground truth

correction term. Ak ® . (g) Predicted correction term u®.

(c) Sharp image = (d) Blurry image y (e) Recovered image & Ak x (2) u®

Figure 2: Visualization of the output of DP-Unet w in Stage Si of one example, in comparison with the ground truth correction term
Ak ® . (a) Ground truth kernel. (b) Noisy kernel. (c) Sharp image x. (d) Blurry image y. (e) Recovered image &. (f) Ground truth
correction term. Ak ® x. (g) Predicted correction term u®,

with the deep-learning benchmark Zhang ez al. [18]]. In this study, we use the same datasets as main paper but use ground-truth
kernels. The noise level is set to be 1%. We can observe that our method perform roughly the same as Zhang ef al.’s.

Table 2: Average PSNR(dB)/SSIM of the results, in comparison to the deep learning benchmark Zhang-17’s [[18] when using
ground-truth kernels.

Dataset Levinetal. Sunetal. Lai et al.
Zhang-17 [18] | 31.74/0.91 32.12/0.88 22.97/0.82
Ours 32.88/0.93 31.81/0.88 23.09/0.75

Computational Efficiency The experiments were conducted on a workstation with a 3.2GHz Intel Xeon E5-2620 v4 CPU,
64G RAM and a GeForce GTX 2080 Ti GPU. The training time took around 72 hours. The comparison of average testing
time for images with size 256 x 256 is shown in the Table[3] It is shown that our method is the second fastest method among
all, which indicates the practical usage.

Table 3: The comparison of average testing time (s) for non-blind deconvolution methods when deconvoluting 256 x 256
images

Method Krishnan-09[3] Ji-12[2] Zoran-11[21] Whyte-14[15] Kruse-17[5] Zhang-17[18] Zhang-17[19] Ours
Time(s) 0.26 18.8 105.18 0.75 0.15 0.02 0.31 0.09

4. Visual comparisons on real images

As there is no ground truth for real images. we showed visual comparison of many examples on real images. See Fig3]-
[I4] for the comparison of the results on Lai e al.’s dataset [6]. It can be seen that our results are noticeably better than those
from other methods in terms of visual quality. It justified the value of the proposed method to image deblurring in practice.



Input Krishnan-09[3] Zoran-11[21]]

Whyte-14[15] Zhang-17[18]] Vasu-18[14] Ours

Figure 3: Deblurred results of image ”Pantheon” from the real dataset in Lai ez al. [6]. The kernel are estimated by Zhong et
al. [20]]. Zoom in for better inspection.

5. Visual comparisons on synthetic images

See Fig[16]- 23] for visual comparison of the results of some synthetic images from Levin et al.’s dataset and Sun et al.’s
dataset with noise level 1%. It can be seen that our recovery results are noticeably better than other compared ones in terms
of visual quality: recovering more image details while introducing less artifacts. Such an advantage of the proposed method
over others in terms of visual quality is consistent with that in terms of quantitative metric, shown in Table 2 in main paper.
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Figure 4: Deblurred results of image “boat1” from the real dataset in Lai et al. [6]. The kernel are estimated by Cho and Lee
[1]. Zoom in for better inspection.

Zhang-17[18] Vasu-18[14]
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Figure 5: Deblurred results of image “istanbul” from the real dataset in Lai et al. [6]. The kernel are estimated by Pan et al.
[10]. Zoom in for better inspection.
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Figure 6: Deblurred results of image “fishes” from the real dataset in Lai ef al. [6]. The kernel are estimated by Cho and Lee
[1]]. Zoom in for better inspection.

Whyte-14[15]] Zhang-17[18]] Vasu-18[14] Ours

Figure 7: Deblurred results of image "house3” from the real dataset in Lai ef al. [6]. The kernel are estimated by Pan et al.
[10]. Zoom in for better inspection.



Whyte-14[15] Zhang-17[18] Vasu-18[14] Ours

Figure 8: Deblurred results of image “fountainl” from the real dataset in Lai et al. [6]. The kernel are estimated by Sun ef
al. [13]. Zoom in for better inspection.

Input Krishnan-09[3]] Zoran-11[21]] Ji-112])
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Figure 9: Deblurred results of image “lyndsey” from the real dataset in Lai et al. [6]. The kernel are estimated by Xu et al.
[17). Zoom in for better inspection.
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Figure 10: Deblurred results of image “roma” from the real dataset in Lai et al. [6]. The kernel are estimated by Xu et al.
[17). Zoom in for better inspection.

Krishnan-09[3]] Zoran-11[21]] Ji-11[2])
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Figure 11: Deblurred results of image “nv” from the real dataset in Lai et al. [6]. The kernel are estimated by Xu and Jia
[16]. Zoom in for better inspection.



Zhang-17[18]

Whyte-14[15]

Figure 12: Deblurred results of image “text10” from the real dataset in Lai et al. [6]. The kernel are estimated by Pan et al.
[10]. Zoom in for better inspection.

Input Krishnan-09[3] Zoran-11[21]] Ji-11[12]
Whyte-14[15] Zhang-17[18] Vasu-18[[14] Ours

Figure 13: Deblurred results of image “statuel” from the real dataset in Lai et al. [6]. The kernel are estimated by Krishnan
et al. [4]]. Zoom in for better inspection.
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Figure 14: Deblurred results of image “toy” from the real dataset in Lai et al. [6]. The kernel are estimated by Levin et al.
[8]. Zoom in for better inspection.
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Figure 15: Deblurred results for one example image from Levin ef al.’s dataset with noise level 1%.
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Figure 17: Deblurred results for one example image from Levin ef al.’s dataset with noise level 1%.
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Figure 18: Deblurred results for one example image from Levin ef al.’s dataset with noise level 1%.
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Figure 19: Deblurred results for one example image from Sun ef al.’s dataset with noise level 1%.
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Figure 20: Deblurred results for one example image from Sun ef al.’s dataset with noise level 1%.

TE T

45

iy B

Zoran-11

Sharp

Figure 21: Deblurred results for one example image from Sun ef al.’s dataset with noise level 1%.
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Figure 22: Deblurred results for one example image from Sun ef al.’s dataset with noise level 1%.
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Figure 23: Deblurred results for one example image from Sun et al.’s dataset with noise level 1%.
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