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Along with the supplementary document, we provide a
supplementary video for easier understanding of the pro-
posed approach and better visualization of the 3D recon-
struction results. The supplementary document is arranged
as follows: We provide training schedule and additional im-
plementation details in the initial sections. We add more
detailed ablations on the role of individual components of
the proposed cycle consistency based losses. Subsequently
we present experimental results on the effect of number of
nearest neighbours, consistency and symmetry losses, dense
point correspondence, inference stage optimization and col-
ored point cloud reconstruction. We provide qualitative re-
sults on failure modes of our approach. Lastly, we provide
the architectural details of our reconstruction and pose pre-
diction networks.1

1. Training Schedule

We train our networks for 400000 iterations using Adam
optimizer with a learning rate of 0.0005. For training our
approach, we observe that the pose prediction network con-
verges at a much earlier stage compared to the reconstruc-
tion network. At the half-way stage (200000 iterations), we
freeze the pose network and train the reconstruction net-
work with just image and mask losses, similar to the DIF-
FER baseline. We observe that this helps in obtaining bet-
ter 3D shape reconstructions and eliminate outlier points in
predictions.

2. Additional Implementation Details

We choose the optimal hyperparameter values based on
the reconstruction performance on the validation set. The
weight for geometric consistency loss, β is set to 10000 and
pose consistency loss, ρ is set to 1. The weight for nearest
neighbours consistency loss κ is set to be same as that for

1Code is available at https://github.com/val-iisc/ssl_
3d_recon

mask loss α. During the second half of the training sched-
ule, the weights for consistency losses β and ρ are set to 0
and that of image and mask losses α is reduced to 10. In the
experiments on nearest neighbours, we consider five near-
est neighbours for every input among which n images are
sampled randomly. The effect of the number of neighbours
chosen, n, is presented in Fig. 1 and Table 2. In inference
stage optimization experiments, the weights for regulariza-
tion and symmetry loss, λ and κ are both set to 500.

3. Role of Cycle Consistency Losses
We present quantitative ablation on the role of individ-

ual components of our proposed cycle consistency loss in
Table 1. We present qualitative comparison of reconstruc-
tion with and without these losses in a self-supervised set-
ting in Fig. 2. The network fails to learn meaningful 3D
shapes in the absence of the proposed losses, while the re-
constructions closely match the input when the losses are
utilized. We also observe that each of the individual losses
help improve the reconstructions and the best performance
is obtained when all the losses are combined. Fig. 3, dis-
plays the qualitative results on the effect of geometric con-
sistency loss on the pose supervised ULSP Sup approach.
We observe a significant improvement in the reconstruction
quality, suggesting the portable nature of the proposed loss.

4. Effect of Nearest Neighbours
Fig. 3 and Tables 1 and 3 in the main submission demon-

strate the efficacy of the nearest neighbours consistency
loss. Here, we analyze the effect of the number of cho-
sen nearest neighbours for each image. Table 2 presents
quantitative comparison of reconstruction performance for
different number of neighbours. We observe a significant
improvement when just a single image is utilized. The per-
formance improves or remains nearly same as more number
of images are considered. When more than 3 images are
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Geometric CC Pose CC Nearest Chamfer EMD
Neighbor CC Car Chair Aero Car Chair Aero

7 7 7 10.33 21.84 15.06 18.32 23.40 16.12
3 7 7 5.78 27.89 10.77 7.07 26.9 15.76
7 3 7 11.31 11.46 12.47 11.59 14.97 15.26
3 3 7 6.39 13.58 8.66 6.42 16.46 12.53
3 3 3 5.48 10.91 7.11 4.95 14.93 11.07

Table 1: Effect of Consistency Loss: We evaluate the effect of the proposed consistency losses on reconstruction metrics.
The network fails to train in the absence of the consistency losses in the self-supervised setting. Each of the proposed losses
is necessary to obtain the optimal performance.

used in loss calculation, we observe a drop in performance.
This behaviour is consistent with our expectations, since the
farther nearest neighbours have lower geometric similarity
with the input image.

5. Effect of Symmetry Loss
Symmetry loss (Section 3.4 of main paper) was proposed

as an additional regularization to obtain meaningful 3D re-
constructions and to align the reconstructions to a prede-
fined canonical pose. Here, we present quantitative results
(Table 3) for reconstruction performance with and without
symmetry loss. We use both consistency and nearest neigh-
bor losses for both the methods. We observe that symmetry
loss is crucial in getting reasonable reconstructions for the
airplane category. It does not affect the performance for the
car category while it has a negative impact on chair recon-
structions. Similar trends were observed on the validation
set too. Based on these observations, we choose the best
combination for Ours-NN model. We use the symmetry loss
only for the airplane category in Ours-NN.

6. Results on Point Correspondence
We observe that the reconstructed point clouds have

dense point-wise correspondence. That is, points with sim-
ilar indices in the regressed list of points are present in se-
mantically simillar regions. To visualize this, we use a col-
ored UV map to obtain point correspondences on the point
cloud. Fig. 4 depicts the UV mapped point clouds. We ob-
serve that points with similar color are grouped together and
have correspondence across different samples.

7. Results on Inference Stage Optimization
Fig. 4 of the paper demonstrates that ISO results in sig-

nificant improvement in correspondence of the reconstruc-
tions to the input image. We present the corresponding
quantitative results in Table 4. The metrics are consistent
with our observations that the point cloud structure remains
intact in occluded regions while closely matching the input
image in the visible regions.

8. Results on Color Prediction

Since our networks predict colored point clouds, we
present qualitative and quantitative results on it in Fig 5
and Table 5. Due to the absence of good ground-truth for
evaluation of color prediction on point clouds, we project
our reconstructions from 10 randomly sampled view-points
and perform comparison in the 2D domain. We observe
a greater correspondence to the input image in our projec-
tions compared to those of the pose supervised DIFFER ap-
proach, particularly in the case of car category. Since the
color metrics are dependent on the quality of our recon-
structions, DIFFER has improved performance in the chair
category, while we outperform it in the car category.

9. Failure Cases

Fig. 6 presents a few failure cases. Some reconstructions
have high density clusters leaving very few points to model
the thinner structures (Fig. 6(a)). Clusters in airplane cate-
gory lead to reconstructions with thin structures. However,
we note that such failure modes are also observed in ear-
lier point cloud reconstruction literature [1] and addressing
these forms an important future work. Our approach also
fails to accurately model certain structures like the spoil-
ers in cars and complex leg and handle structures in chairs
(Fig. 6(b)). Training with larger number of such examples
might help alleviate the problem.

10. Network Architecture

Details of our reconstruction and pose network architec-
tures are provided in Tables 6 and 7. We use a dual branch
reconstruction network similar to DIFFER [1] for recon-
structing point locations and color values. The structure
branch of the reconstruction network and the pose network
have similar architecture except for the output layer. We use
the output of the Ds1 ( 6) layer our reconstruction network
as the embedding to obtain the nearest neighbours in our
experiments.



Neighbours Car Chair Aero
Chamfer EMD Chamfer EMD Chamfer EMD

0 6.39 6.42 13.58 16.46 8.66 12.53
1 5.47 4.93 10.91 14.93 8.35 12.3
2 5.51 5.29 10.65 15.46 7.1 11.07
3 5.57 5.16 10.90 14.84 8.99 14.02
4 5.54 5.24 11.93 16.64 8.65 13.35

Table 2: Effect of Nearest Neighbours: We examine the effect of number of images of nearest neighbours on the recon-
struction metrics. The performance improves or remains nearly same as more number of images are considered. When more
than 3 images are used in loss calculation, we observe a drop in reconstruction performance due to the increased disparity
between neighbours and input image.
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Figure 1: Effect of Nearest Neighbours: We examine the effect of number of images of nearest neighbours on the recon-
struction metrics. The performance improves or remains nearly same as more number of images are considered. The best
performance is achieved when one or two images are used while reconstructions suffer when more than 3 images are utilized.

References
[1] K L Navaneet, Priyanka Mandikal, Varun Jampani, and

R Venkatesh Babu. DIFFER: Moving beyond 3d reconstruc-
tion with differentiable feature rendering. In CVPR Work-
shops, 2019. 2, 7



Ours-NO_CC                                Ours

Input                   GT                            View 1                View 2                    View 3                                        View 1                         View 2                       View 3                       

Figure 2: Effect of Cycle Consistency Loss The network fails to learn meaningful 3D shapes in the absence of the proposed
geometric and pose cycle consistency losses. The reconstructions closely match the input when the losses are utilized.
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Figure 3: Portability of Proposed Loss We employ the proposed geometric cycle consistency loss atop the pose-supervised
ULSP approach. We observe a significant improvement in the reconstruction quality, suggesting the portable nature of the
proposed loss.

Figure 4: Point Correspondence: Similar indices in the point cloud are visualized with the same color. The reconstructions
exhibit high point correspondence across models.



Method Chamfer EMD
Car Chair Aero Car Chair Aero

Ours-No-Sym 5.48 10.91 7.91 4.95 14.93 13.98
Ours-Sym 5.72 12.34 7.11 5.24 16.67 11.07

Table 3: Effect of Symmetry Loss: Symmetry loss is cru-
cial for effective reconstructions on airplane category. We
choose the best settings from the ablation for each category
in Ours-NN model.

Categ. Method Chamfer EMD

Car Ours-NN 5.47 4.93
Ours-NN post ISO 5.49 5.01

Chair Ours-NN 10.91 14.93
Ours-NN post ISO 15.32 17.79

Aero Ours-NN 7.1 11.07
Ours-NN post ISO 7.62 11.09

Table 4: Quantitative Analysis of ISO: Chamfer and EMD
metrics before and after inference stage optimization are
comparable. This indicates that the point cloud structures
are not degraded in occluded regions due to ISO.

Method Car Chair Aero

DIFFER 8.59 12.81 4.69
Ours-CC 8.58 14.19 4.8
Ours-NN 8.09 13.51 4.77

Table 5: Color Metrics: We present the L2 distance be-
tween predicted projections and ground-truth images to
evaluate color prediction. We either outperform or perform
comparably to the pose supervised DIFFER approach.

Input DIFFER Ours-NN DIFFER Ours-NN

View 1 View 2

Figure 5: Colored Point Cloud Reconstruction We com-
pare the colored point cloud reconstructions of DIFFER and
our approach. We achieve higher correspondence in color
to the input image compared to DIFFER.
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Figure 6: Failure cases: (a) Points are clustered with very
few points being used for thin structures like the legs of
the chair. (b) Details like car spoilers and complex chair
legs/handles are not accurately reconstructed.



S.No. Layer
Filter Size/

Stride Output Size

Structure Branch
Es1 conv 3x3/2 32x32x32
Es2 conv 3x3/2 16x16x64
Es3 conv 3x3/2 8x8x128
Es4 conv 3x3/2 4x4x256
Ds1 linear - 128
Ds2 linear - 128
Ds3 linear - 128
Ds4 linear - 1024*3

Color Branch
Ec1 conv 3x3/2 32x32x32
Ec2 conv 3x3/2 16x16x64
Dc1 linear - 128
Dc2 linear - 128
Dc3 linear - 128
Dc3 concat(Ds3, Dc3) - 256
Dc4 linear - 128
Dc4 linear - 1024*3

Table 6: Reconstruction Network Architecture: We use
dual branch network architecture for regressing point loca-
tions and color as it is shown to be highly effective [1]

S.No. Layer
Filter Size/

Stride Output Size

Es1 conv 3x3/2 32x32x32
Es2 conv 3x3/2 16x16x64
Es3 conv 3x3/2 8x8x128
Es4 conv 3x3/2 4x4x256
Ds1 linear - 128
Ds2 linear - 128
Ds3 linear - 128
Ds4 linear - 2

Table 7: Pose Network Architecture: We use an architec-
ture similar to reconstruction network except for the out-
put layer. In the pose prediction network, two values corre-
sponding to azimuth and elevation parameters of the camera
are regressed.


