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A. Ablation Study on the POM forecasting ex-
periment with Virtual Simulator Dataset

In this section, we present the results of an ablation study
conducted on the test set (10% of the dataset) of the Virtual
Simulator experiment to investigate the impact of differ-
ent hyper-networks inputs on the POM forecasting perfor-
mance. As mentioned in Section 4 and 5.1, each 5-second
snippet is divided into a 1-second long history and a 4-
second long prediction horizons. All the inputs forming the
conditions C used in the ablation study are extracted from
the history portion, and are listed below.

1. XREF
t=−1:0: historical states of the reference car in pixel

coordinates,

2. XAi
t=−1:0: historical states of the actors excluding the

reference car in pixel coordinates and up to 3 closest
actors,

3. XSS
t=0: stop-sign locations in pixel coordinates, and

4. Ω ∈ { /0,ΩAll}: bev images of size N× 256× 256. N
may include all, or a subset of the following channels:
stop signs at t = 0, street lanes at t = 0, reference car &
actors images over a number of time-steps t ∈ [−1,0]s.

As presented in Table S1, we trained 6 distinct models
to output p(Xt |C) for t = 2s,4s. The six models can be
grouped into two different sets depending on the Ω that was
used. The first group is the models that do not utilize any
bev map information, therefore Ω = /0. The second group
leverages all bev images Ω = ΩAll . Each group can be di-
vided further, depending on whether a model uses XAi

t=−1:0
and XSS

t=0. The HCNAF model which takes all bev images
Ω = ΩAll from the perception model as the conditions C5
(see Table 1) excluding the historical states of the actors and
stop-signs is denoted by the term best model, as it reported
the lowest NLL. We use Mi to represent a model that takes
Ci as the conditions.

Note that the hyper-network depicted in Figure 5 is used
for the training and evaluation, but the components of the
hyper-network changes depending on the conditions. We

also stress that the two modules of HCNAF (the hyper-
network and the conditional AF) were trained jointly. Since
the hyper-network is a regular neural-network, it’s parame-
ters are updated via back-propagations on the loss function.

As shown in Table S1, the second group (M5:6) performs
better than the first group (M1:4). Interestingly, we observe
that the model M1 performs better than M2:4. We suspect
that this is due to M2:4 using imperfect perception informa-
tion. That is, not all the actors in the scene were detected
and some actors are only partially detected; they appeared
and disappeared over the time span of 1-second long his-
tory. The presence of non-compliant, or abnormal actors
may also be a contributing factor. When comparing M2 and
M3 we see that the historical information of the surrounding
actors did not improve performance. In fact, the model that
only utilizes XAi at time t = 0 performs better than the one
using XAi across all time-steps. Finally, having the stop-sign
locations as part of the conditions is helping, as many snip-
pets covered intersection cases. When comparing M5 and
M6, we observe that adding the states of actors and stop-
signs in pixel coordinates to the conditions did not improve
the performance of the network. We suspect that it is mainly
due to the same reason that M1 performs better than M4.

B. Implementation Details on Toy Gaussian
Experiments

For the toy gaussian experiment 1, we used the same
number of hidden layers (2), hidden units per hidden layer
(64), and batch size (64) across all autoregressive flow mod-
els AAF, NAF, and HCNAF. For NAF, we utilized the con-
ditioner (transformer) with 1 hidden layer and 16 sigmoid
units, as suggested in [1]. For HCNAF, we modeled the
hyper-network with two multi-layer perceptrons (MLPs)
each taking a condition C ∈ R1 and outputs W and B. Each
MLP consists of 1 hidden layer, a ReLU activation func-
tion. All the other parameters were set identically, includ-
ing those for the Adam optimizer (the learning rate 5e−3

decays by a factor of 0.5 every 2,000 iterations with no im-
provement in validation samples). The NLL values in Table
1 were computed using 10,000 samples.

For the toy gaussian experiment 2, we used 3 hidden lay-



Table S1: Ablation study on Virtual Simulator. The evaluation metric is negative log-likelihood. Lower values are better.

Conditions Ω = /0 Ω = ΩAll

C1 C2 C3 C4 C5 C6

NLL t = 2s -8.519 -8.015 -7.905 -8.238 -8.943 -8.507
t = 4s -6.493 -6.299 -6.076 -6.432 -7.075 -6.839

C1 = XREF
t−τ:t C3 = XREF

t−τ:t +XA1:N
t−τ:t C5 = XREF

t−τ:t +ΩAll (best model)

C2 = XREF
t−τ:t +XA1:N

t C4 = XREF
t−τ:t +XA1:N

t−τ:t +XSS
t C6 = XREF

t−τ:t +ΩAll +XA1:N
t−τ:t +XSS

t

ers, 200 hidden units per hidden layer, and batch size of 4.
We modeled the hyper-network the same way we modeled
the hyper-network for the toy gaussian experiment 1. The
NLL values in Table 2 were computed using 10,000 test
samples from the target conditional distributions.

C. Number of Parameters in HCNAF

In this section we discuss the computational costs of HC-
NAF for different model choices. We denote D and LF as
the flow dimension (the number of autoregressive inputs)
and the number of hidden layers in a conditional AF. In
case of LF = 1, there exists only 1 hidden layer hl1 be-
tween X and Z. We denote HF as the number of hid-
den units in each layer per flow dimension of the condi-
tional AF. Note that the outputs of the hyper-network are
W and B. The number of parameters for W of the condi-
tional AF is NW = D2HF(2+(LF −1)HF) and that for B is
NB = D(HF LF +1).

The number of parameters in HCNAF’s hyper-network
is largely dependent on the scale of the hyper-network’s
neural network and is independent of the conditional AF
except for the last layer of the hyper-network as it is con-
nected to W and B. The term N1:LH−1 represents the to-
tal number of parameters in the hyper-network up to its
LH − 1th layer, where LH denotes the number of layers in
the hyper-network. HLH is the number of hidden units in
the LH th (the last) layer of the hyper-network. Finally, the
number of parameters for the hyper-network is given by
NH = N1:LH−1 +HLH (NW +NB).

The total number of parameters in HCNAF is therefore
a summation of NW , NB, and NH . The dimension grows
quadratrically with the dimension of flow D, as well as HF
for LF ≥ 2. The key to minimizing the number of parame-
ters is to keep the dimension of the last layer of the hyper-
network low. That way, the layers in the hyper-network,
except the last layer, are decoupled from the size of the
conditional AF. This allows the hyper-network to become
large, as shown in the POM forecasting problem where the
hyper-network takes a few million dimensional conditions.

D. Conditional Density Estimation on MNIST
The primary use of HCNAF is to model conditional

probability distributions p(x1:D|C) when the dimension of
C (i.e., inputs to the hyper-network of HCNAF) is large.
For example, the POM forecasting task operates on large-
dimensional conditions with DC > 1 million and works with
small autoregressive inputs D = 2. Since the parameters
of HCNAF’s conditional AF grows quickly as D increases
(see Section C), and since the conditions C greatly influence
the hyper-parameters of conditional AF module (Equation
4), HCNAF is ill-suited for density estimation tasks with
D >> DC. Nonetheless, we decided to run this experiment
to verify that HCNAF would compare well with other recent
models. Table S2 shows that HCNAF achieves the state-of-
art performance for the conditional density estimation.

MNIST is an example where the dimension of autore-
gressive variables (D = 784) is large and much bigger than
DC = 1. MNIST images (size 28 by 28) belong to one
of the 10 numeral digit classes. While the unconditional
density estimation task on MNIST has been widely studied
and reported for generative models, the conditional density
estimation task has rarely been studied. One exception is
the study of conditional density estimation tasks presented
in [2]. In order to compare the performance of HCNAF
on MNIST (D >> DC), we followed the experiment setup
from [2]. It includes the dequantization of pixel values and
the translation of pixel values to logit space. The objective
function is to maximize the joint probability over X := x1:784
conditioned on classes Ci ∈ {0, ...,9} of X as follows.

p(x1:784|Ci) =
784

∏
d=1

p(xd |x1:d−1,Ci). (1)

For the evaluation, we computed the test log-likelihood
on the joint probability p(x1:784) as suggested in [2]. That is,
p(x1:784) = ∑

9
i=0 p(x1:784|Ci)p(Ci) with p(Ci) = 0.1, which

is a uniform prior over the 10 distinct labels. Accordingly,
the bits per pixel was converted from the LL in logit space
to the bits per pixel as elaborated in [2].

For the HCNAF presented in Table S2, we used LF = 1
and HF = 38 for the conditional AF module. For the hyper-
network, we used LH = 1, HH,W = 10 for W, HH,B = 50 for
B, and 1-dimensional label as the condition C ∈ R1.



Table S2: Test negative log-likelihood (in nats, logit space)
and bits per pixel for the conditional density estimation task
on MNIST. Lower values are better. Results from models
other than HCNAF were found in [2]. HCNAF is the best
model among the conditional flow models listed.

Models Conditional NLL Bits Per Pixel
Gaussian 1344.7 1.97

MADE 1361.9 2.00

MADE MoG 1030.3 1.39

Real NVP (5) 1326.3 1.94

Real NVP (10) 1371.3 2.02

MAF (5) 1302.9 1.89

MAF (10) 1316.8 1.92

MAF MoG (5) 1092.3 1.51

HCNAF (ours) 975.9 1.29

E. Detailed Evaluation Results and Visualiza-
tion of POMs for PRECOG-Carla Dataset

The evaluation results and POM visualizations are pre-
sented in the next few pages.
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Figure S1: Detailed evaluation results on the PRECOG-Carla test set per time-step for the HCNAF and HCNAF(No lidar)
models, compared to average PRECOG published performance, such as described in Table 3. AVG in the plot indicates the
averaged extra nats of a model over all time-steps nt=1:20 (i.e., Σ20

t=1ênt/20). Note that the x-axis time steps are 0.2 seconds
apart, thus nt = 20 corresponds to t = 4 seconds into the future and that there is no upper bound of ê as ê≥ 0. As expected,
the POM forecasts pmodel(X |C) are more accurate (closer to the target distribution p′(X |C)) at earlier time-steps, as the
uncertainties grow over time. For all time-steps, the HCNAF model with lidar approximates the target distribution better
than the HCNAF model without lidar. Both with and without lidar, HCNAF outperforms a state-of-the-art prediction model,
PRECOG-ESP [3].



Figure S2: Continuing examples (3 through 5) from the POM forecasts of the HCNAF model described in Table 3 (with
lidar) on the PRECOG-Carla dataset. In the third example, the car 1 enters a 3-way intersection and our forecasts captures
the two natural options (left-turn & straight). Example 4 depicts a 3-way intersection with a queue formed by two other cars
in front of car 1. HCNAF uses the interactions coming from the front cars and correctly forecast that car 1 is likely to stop
due to other vehicles in front if it. In addition, our model captures possibilities of the queue resolved at t = 4s and accordingly
predicts occupancy at the tail. The fifth example illustrates car 1 while starting a turn left as it enters the 3-way intersection.
The POM forecast for t = 4s is an ellipse with a longer lateral axis, which reflects the higher uncertainty in the later position
of the car 1 after the turning.



Figure S3: Continuing examples (6 through 9) from the POM forecasts of the HCNAF model described in Table 3 (with
lidar) on the PRECOG-Carla dataset. In examples 6 and 7, the car 1 enters 3-way intersections and POM shows that HCNAF
forecast the multi-modal distribution successfully (straight & right-turn for the example 6, left-turn & right-turn for the
example 7). Example 8 depicts a car traveling in high-speed in a stretch of road. The POM forecasts are wider-spread along
the longitudinal axis. Finally, example 9 shows a car entering a 4-way intersection at high-speed. HCNAF takes into account
the fact that car 1 has been traveling at high-speed and predicts the low likelihood of turning left or right, instead forecasting
car 1 to proceed straight through the intersection.



Figure S4: HCNAF for forecasting POMs on our Virtual Simulator dataset. Left column: one-second history of actors (green)
and reference car (blue). Actors are labeled as Ai. Center and right columns: occupancy prediction for actor centers xt , yt , at
t = 2 and 4 secs., with actor full body ground truth overlayed. Note that actors may enter and exit the scene. In example 1,
our forecasts captured the speed variations of A1, the stop line deceleration and the multi-modal movements (left/right turns,
straight) of A2, and finally the stop line pausing of A3. In Example 2, HCNAF predicts A2 coming to a stop and exiting the
intersection before A3, while A3 is yielding to A2. Finally, example 3 shows that HCNAF predicts the speed variations along
a stretch of road for A1.


