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1. Von Neumann’s trace theorem
We use von Neumann’s trace theorem repeatedly in the

main paper, hence we state it here for completeness, using
the inner products �X,Y � = tr(XTY ), and �x,y� = xTy.

Theorem 2 (Von Neumann [22]). Let X, Y ∈ �n×n and
σ(X) be the singular value vector of X . Then

�X,Y � ≤ �σ(X),σ(Y )�,

with equality if and only if X and Y are simultaneously
unitarily diagonalizable.

Consider maximization over Z in (19) and note that

− �X − Z�2F = −�X�2F − �Z�2F + 2�X,Z�, (40)

and by Theorem 2, �X,Z� ≤ �σ(X),σ(Z)�, with equal-
ity if X and Z are simultaneously unitarily diagonalizable.
Note that the Frobenius norm is unitarily invariant, with
�X�2F =

�
i σi(X)2. Therefore

− �X − Z�2F ≤ −
�

i

(σi(X)− σi(Z))
2
, (41)

with equality if X and Z are simultaneously unitarily diag-
onalizable, i.e. X = UDσ(X)V

T and Z = UDσ(Z)V
T ,

where Dx is a diagonal matrix with x on the main diagonal.
The remaining terms of (19) only depend on the singular

values of Z and therefore the maximum occurs when we
select Z so that we have equality in (41). This establishes
the equality between (19) and (20) of the main paper.

2. The Fenchel Conjugate
In this section, we compute the Fenchel conjugate

of (12), which is necessary in order to find the convex enve-
lope. Let �X,Y � = tr(XTY ), and note that we can write

�Y,X� − �X −X0�F = �Z�2F − �X0�2F − �Z −X�2F .
(42)

where Z = 1
2Y +X0. By definition, the Fenchel conjugate

of (12) is given by

f∗
h(Y ) = sup

X
�Y,X� − fh(X)

= sup
X

�Z�2F − �X0�2F − �X − Z�2F − h(σ(X)),

(43)
where we use (42) in the last step. Note that the function h,
as well as the Frobenius norm, is unitarily invariant. Fur-
thermore, �X − Z�2F = �X�2F + �Z�2F − 2�X,Z�, and
�X,Z� ≤ �σ(X),σ(Z)� by von Neumann’s trace inequal-
ity, with equality if X and Z are simultaneously unitarily di-
agonalizable. This reduces the problem to optimizing over
the singular values alone, which, after some manipulation,
can be written as

f∗
h(Y ) = max

σ(X)
−�X0�2F

−
k�

i=1

�
σ2
i (X)− 2[σi(Z)− ai]σi(X) + bi

�
,

(44)
where rank(X) = k. Considering each singular value sep-
arately leads to a program on the form

min
xi

x2
i − 2[σi(Z)− ai]xi + bi, (45)

subject to σi+1(X) ≤ xi ≤ σi−1(X). The sequence of
unconstrained minimizers is given by xi = σi(Z) − ai.
If there exists xi < 0, then this is not the solution to the
constrained problem. Nevertheless, the sequence is non-
increasing, hence there is an index p, such that xp ≥ 0 and
xp+1 < 04.

Note that

k�

i=1

x2
i − 2sixi = �x�2 − 2�x, s�, (46)

4We allow the case p = 0, in which case the zero vector is optimal.



Figure 5. Two different cases for values of ai, bi and σi(X) of (21).

hence we can consider optimizing �x− s�2 = �x�2 −
2�x, s� + �s�2 subject to x1 ≥ x2 ≥ · · · ≥ xk ≥ 0. Fur-
thermore, s1 ≥ s2 ≥ · · · ≥ sk.

Assume that minimum is obtained at x∗ and fix x∗
p.

Since sj < 0 for all j > p, we must have x∗
j = 0 for

j > p. It is now clear that, x∗
j = sj otherwise, hence

x∗
j = max{sj , 0} = [sj ]+. Inserting into (44) gives

f∗
h(Y ) = max

k
−�X0�2F −

k�

i=1

�
bi − [σi(Z)− ai]

2
+

�
.

(47)
Since [si]+ = [σi(Z) − ai]+ is non-increasing, and bi is
non-decreasing, the maximizing k is obtained when

[σk(Z)− ak]
2
+ ≥ bk and bk+1 ≥ [σk+1(Z)− ak+1]

2
+.
(48)

For the maximizing k = k∗, we can write

−
k∗�

i=1

�
bi − [σi(Z)− ai]

2
+

�

=

n�

i=1

[σi(Z)− ai]
2
+ −

n�

i=1

min{bi, [σi(Z)− ai]
2
+}.

(49)
From this observation, we get

f∗
h(Y ) =

n�

i=1

�
σi(

1

2
Y +X0)− ai

�2

+

− �X0�2F

−
n�

i=1

min

�
bi,

�
σi(

1

2
Y +X0)− ai

�2

+

�
.

(50)

3. The Convex Envelope

Applying the definition of the bi-conjugate f∗∗
h (X) =

supY �Y,X� − f∗
h(Y ) to (50), and introduce the change of

variables Z = 1
2Y +X0 we get

f∗∗
h (X) = max

Z
2�X,Z −X0� −

n�

i=1

[σi(Z)− ai]
2
+

+ �X0�2F +

n�

i=1

min
�
bi, [σi(Z)− ai]

2
+

�
.

(51)

By expanding squares and simplifying, 2�X,Z − X0� +
�X0�2F = �X −X0�2F − �X − Z�2F + �Z�2F , which
yields (19).

4. Obtaining the Maximizing Sequences
In this section we give the proof for the convergence of

Algorithm 1, and how to modify it to cope with the corre-
sponding problem for the proximal operator.

4.1. Proof of Theorem 1

Proof of Theorem 1. First, we will show that each step in
the algorithm returns a solution to a constrained subprob-
lem Pi, corresponding to a (partial) set of desired con-
straints Zi.

Let P0 denote the unconstrained problem with solu-
tion ∫ ∈ �n

+. Denote the first interval generated in Al-
gorithm 1 by ι1 = {m1, . . . , n1}, and consider optimizing
the first subproblem P1

max
zm1

≥···≥zn1

c(z), (52)

where Z1 = {z ∈ Z0 | zm1 ≥ · · · ≥ zn1}. By Lemma 1 the
solution vector is constant over the subinterval zi = s for
i ∈ ι1, which is returned by the algorithm. The next steps
generates a solution to subproblem of the form

max
zm1

≥ · · · ≥ zn1

...
zmk

≥ · · · ≥ znk

c(z), (53)

corresponding to subproblem Pk. I the solution to subprob-
lem Pk is in Z , then it is a solution to the problem, otherwise



Figure 6. Illustration of the three different cases for the proximal operator.

Figure 7. Convergence for the different methods compared in Section 6.3. NB: The energies are different, and have been been averaged
over 35 different values of µ (the same values as in Figure 4).

one must add more constraints. We solve problems on the
form

max
z∈Z0

c(z) ≥ max
z∈Z1

c(z) ≥ · · · ≥ max
z∈Z�

c(z) = max
z∈Z

c(z),

(54)
where the last step yields a solution fulfilling the desired
constraints. Furthermore Z0 ⊃ Z1 ⊃ · · · ⊃ Z� ⊃ Z ,
where Z = {z | z1 ≥ · · · ≥ zn ≥ 0}. Finally, it is easy
to see that the algorithm terminates, since there are only
finitely many possible subintervals.

4.2. Modifying Algorithm 1

Following the approach used in [20], consider the pro-
gram

max
s

min{bi, [s− ai]
2
+}−

ρ+ 1

ρ
(s− σi(Y ))2

+ s2 − [s− ai]
2
+,

s.t. σi+1(Z) ≤ s ≤ σi−1(Z).

(55)

Note that the objective function is the pointwise minimum
of

f1(s) = bi −
ρ+ 1

ρ
(s− σi(Y ))2 + s2 − [s− ai]

2
+,

f2(s) = s2 − ρ+ 1

ρ
(s− σi(Y ))2,

(56)

both of which are concave, since ρ+1
ρ > 1. For f1 the max-

imum is obtained in s = aiρ
ρ+1 + σi(Y ), if s ≥ ai otherwise

when s = (ρ + 1)σi(Y ). The minimum of f2 is obtained
when s = (ρ+ 1)σi(Y ).

There are three possible cases, also shown in Figure 6.

1. The maximum occurs when s > ai +
√
bi, hence

f1(s) < f2(s), hence s = aiρ
ρ+1 + σi(Y ).

2. The maximum occurs when s < ai +
√
bi, where

f1(s) > f2(s), hence s = (ρ+ 1)σi(Y ).

3. When s = ai +
√
bi, which is valid elsewhere.

in summary

si =





aiρ

ρ+ 1
+ σi(Y ),

ai
ρ+ 1

+
�

bi < σi(Y ),

ai +
�

bi,
ai +

√
bi

1 + ρ
≤ σi(Y ) ≤ ai

ρ+ 1
+

�
bi,

(1 + ρ)σi(Y ), σi(Y ) <
ai +

√
bi

1 + ρ
,

(57)
By replacing the sequence of unconstrained minimiz-
ers {si} defined by (57), with the corresponding sequence
in Section 4 (of the main paper), and changing the objective
function of Algorithm 1, to the one in (55), the maximizing
singular value vector fo the proximal operator is obtained.

5. Convergence: Motion Capture
In this section we compare the convergence of the dif-

ferent regularizers used in Section 6.3, see Figure 7. Note
that the energies are different, and one can only compare
the number of steps needed until convergence. For this par-
ticular choice of ai and bi the Rh regularizer behaves much
like WNNM used in [17].
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