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1. Comparison with Traditional Consistency
Training Methods

In this section, we present the experiments to validate
the observation that for semantic segmentation, enforcing a
consistency over different perturbations applied to the en-
coder’s outputs rather than the inputs is more aligned with
the cluster assumption. To this end, we compare the pro-
posed method with traditional consistency based SSL meth-
ods. Specifically, we conduct experiments using VAT [6]
and Mean Teachers [9]. In VAT, at each training iteration,
the unsupervised loss is computed as the KL-divergence be-
tween the model’s predictions of the input xu and its per-
turbed version xu + radv . For Mean Teachers, the dis-
crepancy is measured using Mean Squared Error (MSE) be-
tween the prediction of the model and the prediction using
an exponential weighted version of it. In this case, the noise
is sampled at each training step with SGD.

Splits n=500 n=1000

Baseline 51.4 59.2

Mean Teachers 51.3 59.4
VAT 50.0 57.9
CCT 58.6 64.4

Table 1. CCT compared to traditional consistency methods. We
conduct an ablation study on PASCAL VOC, where we compare
the performance of the baseline to the proposed method CCT, VAT
and Mean Teachers. n represents the number of labeled examples.

The results are presented in Table 1. We see that ap-
plying the adversarial noise to inputs with VAT results in
lower performance compared to the baseline. When using
Mean Teachers, in which the noise is not implicitly added
to the inputs, we obtain similar performance to the base-
line. These results confirm our observation that enforcing a
consistency over perturbations applied to the hidden repre-
sentations is more aligned with the cluster assumption, thus
yielding better results.

2. Additional Results and Evaluations
2.1. Distance Measures

In the experiments presented in the paper, MSE was used
as a distance measure d(., .) for the unsupervised loss Lu,
to measure the discrepancy between the main and auxiliary
predictions. In this section, we investigate the effectiveness
of other distance measures between the output probability
distributions. Specifically, we compare the performance of
MSE to the KL-divergence and the JS-divergence. For an
unlabeled example xu, we obtain a main prediction yu with
the main decoder and an auxiliary prediction yka with a given
auxiliary decoder gka . We compare the following distance
measures:
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where m = 1
2 (yu(i) + yka(i)) and y∗(i) refers to the output

probability distribution at a given spatial location i. The
results of the comparison are shown in Table 2.

Splits n=500 n=1000

Baseline 51.4 59.2

CCT KL 54.0 62.5
CCT JS 58.4 64.3
CCT MSE 58.6 64.4

Table 2. CCT with different distance measures. We compare the
performance of MSE to the KL-divergence and the JS-divergence
on PASCAL VOC dataset.

We observe similar performance with dMSE and dJS,
while we only obtain 2.6 and 3.3 points gain for n = 500
and n = 1000 respectively over the baseline when using



dKL. The low performance of dKL might be due to its non-
symmetric nature. With dKL, the auxiliary decoders are
heavily penalized over sharp but wrong predictions, thus
pushing them to produce uniform and uncertain outputs,
and reducing the amount of training signal that can be ex-
tracted from the unlabeled examples. However, with dJS,
which is a symmetrized and smoothed version of dKL, we
can bypass the zero avoidance nature of the KL-divergence.
Similarly, dMSE can be seen as a multi-class Brier score [2]
which is less sensitive to completely incorrect predictions,
giving it similar properties to dJS with a lower computa-
tional cost.

2.2. Confidence Masking and Pairwise Loss

Confidence Masking. (Conf-Mask) When training on
the unlabeled examples, we use the main predictions as the
source for consistency training, which may result in a cor-
rupted training signal when based on uncertain predictions.
A possible way to avoid this is masking the uncertain pre-
dictions. Given a main prediction yu in the form of a prob-
ability distribution over the classes C at different spatial lo-
cations i. We compute the unsupervised loss Lu only over
the pixels i with probability max

C
yu(i) greater than a fixed

threshold β (e.g., 0.5).

Pairwise Loss. (P-Wise) In CCT, we enforce the consis-
tency of predictions only between the main and auxiliary
decoders, without any pairwise consistency in between the
auxiliary predictions. To investigate the effectiveness of en-
forcing such an additional pairwise consistency, we add the
following an additional loss term LP-Wise to the total loss in
Paper Eq. (3) to penalize the auxiliary predictive variance:

LP-Wise =
1

K

K∑
k=1

(yka − ȳa)2 (4)

with ȳa as the mean of the auxiliary predictions yka . Given
K auxiliary decoders, the computation of LP-Wise is in the
order of K2. To reduce it, at each training iteration, we
only compute LP-Wise over a randomly chosen subset of
the auxiliary predictions (e.g., 8 out of K = 30).

Table 3 shows the results of the experiments when us-
ing CCT with Conf-Mask and P-Wise. Interestingly, we
do not observe any gain over CCT when using Conf-Mask,
indicating that using the uncertain main predictions to en-
force the consistency does not hinder the performance. Ad-
ditionally, adding a pairwise loss term results in lower per-
formance compared to CCT, with 3 and 3.2 points differ-
ence in both settings, indicating that adding LP-Wise can
potentially compel the auxiliary decoders to produce simi-
lar predictions regardless of the applied perturbation, thus
diminishing the representation learning of the encoder, and
the performance of the segmentation network as a whole.

Splits n=500 n=1000

Baseline 51.4 59.2

CCT +Conf-Mask 58.4 63.3
CCT +LP-Wise 55.6 61.2
CCT 58.6 64.4

Table 3. CCT with P-Wise and Conf-Mask. The results of the
effect of adding a confidence masking over unsupervised loss and a
pairwise loss between the auxiliary predictions on PASCAL VOC
val set.

3. Algorithm

The proposed Cross-Consistency training method can be
summarized by the following Algorithm:

Algorithm: Cross-Consistency Training (CCT).

Input: Labeled image xl, its pixel-level label y and
unlabeled image xu

Require: Shared encoder h, main decoder gm, K
auxiliary decoders gka

1) Forward xl through the encoder and main
decoder: ŷl = gm(h(xl))

2) Forward the unlabeled input through the shared
encoder: z = h(xu)

3) Generate the main decoder’s prediction for xu:
ŷu = gm(z)

4) Generate the aux. decoders predictions for xu:
for k in [1,K] do

- Apply a given perturbation z̃ = pl(z)
- Forward through the aux. decoder k:
ŷia = gka(z̃)

end
5) Training the network.
Ls = H(ŷu, y)
Lu = 1

K

∑
k d(ŷu, ŷka)

Update network by L = Ls + ωuLu

4. Further Investigation of The Cluster As-
sumption

The learned feature of a CNNs are generally more homo-
geneous, and at higher layers, the network learns to com-
pose low level features into semantically meaningful rep-
resentations while discarding high-frequency information
(e.g., texture). However, the leaned features in a segmen-
tation network seem to have a unique property; the class
boundaries correspond to low density regions, which are
not observed in networks trained on other visual tasks (e.g.,
classification, object detection). See Fig. 1 for an illustra-
tion of this difference.
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Deeplab-v3 (ResNet 152)
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Faster-RCNN (Resnet-101)
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Segmentation Masks Resnet-152
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Figure 1. The smoothness of CNNs features trained on different tasks. (a) Examples from PASCAL VOC 2012 train set. (b) Results
for a segmentation network. (c) Results for an object detection network. (b) Results for a classification network.

5. Adversarial Distribution Alignment
When applying CCT over multiple domains, and to fur-

ther reduce the discrepancy between the encoder’s represen-
tations of the two domains (i.e., the empirical distribution
mismatch measured by the H-Divergence [1]), we investi-
gate the addition of a discriminator branch gd, which takes
as input the encoder’s representation z, and predict 0 for ex-
amples fromD(1) and 1 for examples fromD(2). Hence, we
add the following adversarial loss to the total loss in Eq. (1):

(5)

Ladv =
1

|D(1)|
∑

xi∈D(1)

log(gd(zi))

+
1

|D(2)|
∑

xi∈D(2)

(1− log(gd(zi)))

The encoder and the discriminator branch are competi-
tors within a min-max framework, i.e., the training objective
is max

gd
min
h
Ladv , which can be directly optimized using a

gradient reversal layer as in [3]. The total loss in this case
is:

L = Ls + λadvLadv + ωuLu (6)

Method n=50 n=100

CS CVD Avg. CS CVD Avg.

Baseline 31.2 40.0 35.6 37.3 34.4 35.9
CCT 35.0 53.7 44.4 40.1 55.7 47.9
CCT +Lavd 35.3 49.2 42.2 37.7 52.8 45.2

Table 4. CCT applied to CS+CVD.

For the discriminator branch, similar to [4], we use a
fully convolutional discriminator, with a series of 3×3 con-

volutions and Leaky ReLU non-linearities as shown in Ta-
ble 5. The outputs are of the same size as the encoder out-
puts (i.e. with an input image of spatial dimensionsH×W ,
the outputs of gd are of size 2× H

8 ×
W
8 ).

Description Resolution × channels

Conv 3× 3× 64 1
8 × 64

LeakyReLU
Conv 3× 3× 128 1

8 × 128
LeakyReLU
Conv 3× 3× 256 1

8 × 256
LeakyReLU
Conv 3× 3× 512 1

8 × 512
LeakyReLU
Conv 1× 1× 2 1

8 × 2

Table 5. Discriminator Branch. The added discriminator branch
on top of the encoder, in order to further push towards an invari-
ance of the encoder’s representations between the different do-
mains.

The results are shown in Table 5. Surprisingly, adding
a discriminator branch diminishes the performance of the
segmentation network, hinting to possible learning conflicts
between CCT and the adversarial loss.

6. Multi-scale Inference
To further enhance the predictions of our segmentation

network, we conduct additional evaluations on PASCAL
VOC using multi-scale to simulate a similar situation to
training where we apply random scaling between 0.5 and
2, random croping and random horizontal flip. We apply
the same augmentations during test. For a given test image,



we create 5 versions using 5 scales: 0.5, 0.75, 1, 1.25 and
1.5, each image is also flipped horizontally, resulting in 10
versions of the test image. The model’s prediction are com-
puted for each image, rescaled to the original size, and are
then aggregated by pixel-wise average pooling. The final
result is obtain by taking the argmax over the classes for
each spatial location.

In Table 6, we report the results obtained with multi-
scale inference.

n mIoU

CCT 1000 67.3 (+3.3)
CCT 1500 73.4 (+4)
CCT +9k Image-level labels 1500 75.1 (+2.9)

Table 6. CCT results with multi-scale inference. The mIoU
when we apply multi-scale inference on PASCAL VOC val set.

7. Virtual Adversarial Training (VAT)
Without the label information in a semi-supervised set-

ting, VAT [6] lends itself as a consistency regularization
technique. It trains the output distribution to be isotropically
smooth around each data point by selectively smoothing the
model in its most anisotropic direction. In our case, we ap-
ply the adversarial perturbation radv to the encoder output
z = h(xu). For a given auxiliary decoder gka , we would like
to compute the adversarial perturbation radv that will alter
its predictions the most. We start by sampling a Gaussian
noise r of the same size as z, compute its gradients gradr
with respect the loss between the two predictions, with and
without the injections of the noise r (i.e., KL-divergence is
used as a distance measure d(., .)). radv can then be ob-
tained by normalizing and scaling gradr by a hyperparam-
eter ε. This can be written as follows:

r ∼ N

(
0,

ξ√
dim(z)

I

)
(7)

gradr = ∇rd
(
gka(z), gka(z + r)

)
(8)

radv = ε
gradr
‖gradr‖

(9)

Finally, the perturbed input to gka is z̃ = radv + z. The
main drawback of such method is requiring multiple for-
ward and backward passes for each training iteration to
compute radv . In our case, the amount of computations
needed are reduced given the small size of the auxiliary de-
coders.

8. Dataset sizes
For the size of each split of the datasets used in our ex-

periments, see Table 7.

Splits Train Val Test

PASCAL VOC 10582 1449 1456
Cityscapes 2975 500 1525
CamVid 367 101 233
SUN RGB-D 5285 - 5050

Table 7. Semantic Segmentation Datasets. The size of each split
of the datasets used in the experiments.

9. Further Experimental Details

For the experiments throughout the paper, we used a
ResNet 50 and a PSP module [10] for the encoder. As for
the decoders, we used an initial 1× 1 convolutions to adapt
the depth to the number of classes C, followed by a series
of 1×1 sub-pixel convolutions [8] (i.e., PixelShuffle) to up-
sample the feature maps to the original size. For details see
Table 8.

Encoder Decoder

Description
Resolution ×

channels Description
Resolution ×

channels

ResNet 50 1
8 × 2048 Conv 1× 1× C 1

8 × C
PSPModule [10] 1

8 × 512 Conv 1× 1× 4C 1
8 × 4C

PixelShuffle 1
4 × C

Conv 1× 1× 4C 1
4 × 4C

PixelShuffle 1
2 × C

Conv 1× 1× 4C 1
2 × 4C

PixelShuffle 1× C

Table 8. Encoder-Decoder architecture. Showing the layer type,
the number of the outputs channels and the spatial resolution.

Inference Settings. For PASCAL VOC, during the ab-
lation studies reported in Paper Fig. 6, in order to reduce
the training time, we trained on smaller size image. Specif-
ically, we resize the bigger side to 300 and randomly take
crops of size 240 × 240. For the comparisons with state-
of-the-art we resize the bigger side to 400 and take crops
of size 321× 321 and conduct the inference on the original
sized images. For the rest of the datasets, the evaluation is
conducted on the same sizes as the ones used during train-
ing.

10. Hyperparameters

In order to present a realistic evaluation of the proposed
method, and following the practical considerations men-
tioned in [7]. We avoid any form of intensive hyperparam-
eter search, be it that of the perturbation functions, model
architecture or training settings. We choose the hyperpa-
rameters that resulted in stable training by hand, we do ex-
pect however that better performances can be achieved with
a comprehensive search. The hyperparameters settings used
in the experiments are summarized in Table 9.



Training

SGD
Learning rate 10−2

Momentum 0.9
Weight Decay 10−4

Number of training epochs
PASCAL VOC 50
CamVid 50
Cityscapes & CamVid 50
Cityscapes & SUN RGB-D 100

Losses

Unsupervised loss Lu

Rampup periode for Lu 0.1
Lu weight λu 30

Weakly-supervised loss Lw

Rampup periode for Lw 0.1
Lw weight λw 0.4

Annealed Cross-Entropy loss ab-CE
Rampup periode 0.5
Final threshold 0.9

Adversarial loss Ladv

Weight λadv 2.10−2

Perturbation Functions

I-VAT
VAT ε 2.0
VAT ξ 10−6

DropOut
Dropout rate p 0.5

G-Cutout
Area of the dropped region 0.4

F-Drop
Drop threshold range [0.6, 0.9]

F-Noise
The uniform noise range [−0.3, 0.3]

Table 9. Hyperparameters. The hyperparameter settings used in
our experiments.

11. Ramp-up functions
For the unsupervised loss in Paper Eq. (2), the weighting

function wu is gradually increased from 0 up to a fixed final
weight λu. The rate of increase can follow many possible
rates depending on the schedule used. Fig. 2 shows different
ramp-up schedules. For our experiments, following [5], wu

ramps-up following an exp-schedule:

wu(t) = min(λu, e
5( t

T −1) × λu) (10)

with t as the current training iteration and T as the desired
ramp-up length (e.g., the first 10% of training time). Sim-
ilarly, the threshold η in the ab-CE loss (Paper Eq. (4)) is

gradually increased starting from 1/C, with C as the num-
ber of classes, up to a final threshold α (e.g., 0.9) within a
ramp-up period T (e.g., the first 40% of training time). For
ab-CE, we use a log-schedule to quickly increase η in the
beginning of training:

η(t) = min(α, (1− e−5 t
T )× (α− 1/C) + 1/C) (11)
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Figure 2. Different ramp-up schedules.

12. Computational Overhead

Decoders Input size GPU memory (MB) GPU time (ms)

Main Decoder

96× 96

139 2.0
DropOut 139 2.6
F-Drop 157 3.0
F-Noise 175 45.7
I-VAT 463 82.3
Obj-Msk 463 2.7
Con-Msk 463 2.4
G-Cutout 463 3.3

Main Decoder

256× 128

457 4.0
DropOut 520 4.7
F-Drop 520 5.2
F-Noise 584 149.5
I-VAT 1592 176.0
Obj-Msk 1592 4.7
Con-Msk 1592 4.6
G-Cutout 1592 7.1

Table 10. Computation and memory statistics. Comparisons be-
tween the main and auxiliary decoders with different perturbation
functions. The channel numbers of the input feature maps z is 512.
The lower the values, the better.

In order to present a comparison between the computa-
tional overhead of the different types of auxiliary decoders,
we present various computation and memory statistics in
Table 10. We observe that for the majority of the auxiliary
decoders, the GPU time is similar to that of the main de-
coder. However, we see a significant increase for I-VAT
given the multiple forward and backward passes required to
compute the adversarial perturbation. F-Noise also results
in high GPU time due to the sampling procedure. To this
end we reduce the number of I-VAT decoders (e.g., K = 2



for our experiments). For F-Noise, for an input tensor of
size B × C ×H ×W with B as the batch size, instead of
sampling a noise tensor N of the same size, we sample a
tensor of size 1× C ×H ×W and apply it over the whole
batch. Significantly reduces the computation the computa-
tion time without impacting the performance.

13. Qualitative Results
Pseudo-Labels

Fig. 3 shows some qualitative results of the generated
pseudo pixel-level labels using the available image-level la-
bels. We observe that when considering regions with high
attention scores (i.e. > 0.3), the assigned classes do corre-
spond in most cases to true positives.

Input Image Ground-truth Pseudo labels

Figure 3. The generated pseudo pixel-level labels. Instances of
the generated pseudo pixel-level labels from PASCAL VOC train
set. The white regions correspond to the ignored pixels.

Predictions

Qualitative results of CCT on PASCAL VOC val images
with different values of n are presented in Fig. 4.



Input Image Ground-truth CTT (n=1k) CTT (n=1.5k) CTT (n=1.5k + 9k weak)



Figure 4. CCT results. Semantic Segmentation Results on the PASCAL VOC val images.
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