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1. More Implementation details
The discriminator architecture we used for this work

is: {CBR(n, 3, 1), CBR(2 ∗ n, 3, 2)}n={32,64,128,256},
{CBR(512, 3, 1), CBR(512, 3, 2)}Ksets, {FcBR(1024),
FcBR(512), Fc(1)}, where, CBR(out channels, kernel
size, stride) = Conv + BatchNorm2d + ReLU and FcBR(out
nodes) = Fully conncected + BatchNorm1D + ReLU and Fc
is a fully connected layer. For face normal estimation, we
do not use batchnorm layers in the discriminator. We use
the value K = 2 for MDE and K = 1 for FNE.

Face Normal Estimation We update the generator 3
times for each update of the discriminator, which in turn
is updated 5 times internally as per [1, 3]. The generator
learns from a new batch each time, while the discriminator
trains on a single batch for 5 times.

2. Experiments
Monocular Depth Estimation We provide more quali-

tative results on the test set of the Make3D dataset [5]. Fig-
ure 2 further demonstrates the generalization ability of our
method compared to [8].

Face Normal Estimation Figure 3 depicts the qualita-
tive results on the CelebA [4] and Synthetic [6] datasets.
The translated images corresponding to synthetic and real
images look similar in contrast to the MDE task (Figure 4
of the paper). We suppose that for the task of MDE, re-
gions such as edges are domain specific, and yet hold pri-
mary task related information such as depth cues, which is
why SharinGAN modifies such regions. However, for the
task of FNE, we additionally predict albedo, lighting, shad-
ing and a reconstructed image along with estimating nor-
mals. This means that the primary network needs a lot of
shared information across domains for good generalization
to real data. Thus the SharinGAN module seems to bring
everything into a shared space, making the translated im-
ages {xsh

r , xsh
s } look visually similar.
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Figure 1: Additional Qualitative comparisons of our method
with SfSNet on the examples from test set of the Photoface
dataset [7]. Our method generalizes much better to unseen
data during training.

Figure 1 depicts additional qualitative results of the pre-
dicted face normals for the test set of the Photoface dataset
[7].

Algorithm top-1% top-2% top-3%
SfSNet [6] 80.25 92.99 96.55
SharinGAN 81.83 93.88 96.69

Table 1: Light classification accuracy on MultiPIE dataset
[2]. Training with the proposed SharinGAN also improves
lighting estimation along with face normals.

Lighting Estimation The primary network estimates not
only face normals but also lighting. We also evaluate this.
Following a similar evaluation protocol as that of [6], Table
1 summarizes the light classification accuracy on the Mul-
tiPIE dataset [2]. Since we do not have the exact cropped
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(a) Input Image (b) Ground Truth (c) GASDA[8] (d) SharinGAN

Figure 2: Additional Qualitative results on the test set of Make3D dataset [5]. Our method is able to capture better depth
estimates compared to [8] for all the examples.

dataset that [6] used, we used our own cropping and resiz-
ing on the original MultiPIE data: centercrop 300x300 and
resize to 128x128. For a fair comparison, we used the same
dataset to re-evaluate the lighting performance for [6] and
reported the results in Table 1. Our method not only outper-
forms [6] on the face normal estimation, but also on lighting
estimation.
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Input Image, xs xsh
s = G(xs) Normal Albedo Shading Reconstruction

(a) Qualitative results of our method on CelebA testset [4].

Input Image, xr xsh
r = G(xr) Normal Albedo Shading Reconstruction

(b) Qualitative results of our method on the synthetic data used in [6].

Figure 3: Qualitative results of our method on face normal estimation task. The translated images xsh
r , xsh

s look reasonably
similar for our task which additionally predicts albedo, lighting, shading and Reconstructed image along with the face normal.


