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Appendix A: Derivation of β for F-score

For the purpose of saliency prediction in driving, False Negatives (FN) are more of a concern as compared to
False Positives (FP). This is because it is probably still fine to detect a pedestrian, even if they are not crossing
the road anytime soon. On the contrary, it is a much bigger cost to not detect a person crossing. Thus, we need
to tune our metrics in order to penalize FN more in comparison to FP. As discussed in the paper, DKL and CC
already do that. Here, we provide the derivation of F-score in terms of its hyper-parameter β. We know that:

Precison =
True Positive (TP )

True Positive (TP ) + False Positive (FP )
(1)

and,

Recall =
True Positive (TP )

True Positive (TP ) + False Negative (FN)
(2)

Now, the F-score is given by:

F-score (β) =
(1 + β2) ∗ Precision ∗ Recall

β2 ∗ Precision + Recall
(3)

Replacing for Precision and Recall from 1 and 2 respectively,

F-score (β) =
(1 + β2) ∗ TP

TP+FP ∗
TP

TP+FN

β2 ∗ TP
TP+FP + TP

TP+FN

(4)

=
(1 + β2) ∗ TP

β2 ∗ (TP + FN) + (TP + FP )
(5)

=
(1 + β2) ∗ TP

(1 + β2) ∗ TP + β2 ∗ FN + FP
(6)

In equation 6, we clearly see that the numerator has no FP or FN terms and they are present only in the
denominator in the additive form. Thus we conclude that with increase in FP or FN, F-score (β) value decreases.
That is,

F-score (β) ↓ =
(1 + β2) ∗ TP

(1 + β2) ∗ TP + β2 ∗ FN ↑ +FP
(7)

F-score (β) ↓ =
(1 + β2) ∗ TP

(1 + β2) ∗ TP + β2 ∗ FN + FP ↑
(8)

Also in equation 6, we see that FN has a weight of β2 and FP has a weight of 1. Thus, when β2 is lower than
1, FN has smaller influence on F-score (β) compared to FP , and when β2 is greater than 1, FN has greater
influence on F-score (β) compared to FP. As discussed in the paper and above, FN is more dangerous compared
to FP for autonomous driving task and thus the value of β2 must NOT be chosen lower than 1. We chose to
give equal weightage to FN and FP by taking β2 equals to 1.
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Appendix B: Algorithm description

Here, we mention the hyperparameters in Table 1 and the architecture components in Table 2 of each of the
four algorithms we considered. All the four models were trained on both the gaze-only data and our proposed
SAGE data. The hyperparameters were kept the same during both the training process.

Parameters DR(eye)VE [4] BDD-A [5] ML-Net [1] PiCANet [2]

Input image size 448×448 576×1024 480×640 224×224

Initial Learning rate 0.0001 0.001 0.001 0.001

Learning rate decay - - 0.0005/step 0.1/7000 steps

Non-Linearity in ReLU, ReLU ReLU ReLU
feedforward network Leaky ReLU (α=0.001)

Training Loss function K-L Divergence Cross-Entropy K-L Divergence Binary Cross-Entropy

Optimizer Adam Adam SGD SGD

Batchsize 8 10 8 4

#Training Epochs 20 20 32 20

Table 1: Summary of Hyperparameters

Algorithms Model Architecture

DR(eye)VE [4] COARSE: 6 layer 3D ConvNet (C3D architecture) with Bilinear Upsampling
REFINE: 5 layer 2D ConvNet (for resized input), 1 layer 2D ConvNet (for cropped input)

BDD-A [5] AlexNet feature extractor + Upsampling
+ 3 layer 2D ConvNet (visual processing) + Conv2D-LSTM (temporal processing)

Feature Extraction Network: 13 layer Fully Convolutional Network (FCN)
ML-Net [1] Encoder Network: 1 layer 2D ConvNet

Decoder Network: Bilinear Upsampling

PiCANet [2] Encoder Network: 16 layer FCN (VGG-16)
Decoder Network: 6 layer Deconvolution with bilinear interpolation

Table 2: Network Architectures

Appendix C: Miscellaneous

In the main paper, in Figure 5, we showed a cross-evaluation where we considered two variants of SAGE and
compared it with the respective gaze-only groundtruths. In Table 3, we show a similar result where we consider
two variants of the gaze-only results along with that of SAGE. As seen from the results, SAGE outperforms the
former in almost every case.

Fixation-centric metrics Semantic-centric metrics
DKL CC F1 score MAE

Dataset DR(eye)VE gt BDD-A gt SAGE gt DR(eye)VE gt BDD-A gt SAGE gt DR(eye)VE gt BDD-A gt SAGE gt DR(eye)VE gt BDD-A gt SAGE gt

DR(eye)VE 2.02±0.47 2.26±0.55 1.67±0.41 0.48±0.1 0.45±0.11 0.55±0.11 0.17±0.09 0.13±0.05 0.36±0.09 0.07±0.03 0.07±0.03 0.07±0.03

BDDA 1.74±0.43 1.28±0.43 0.73±0.38 0.42±0.14 0.58±0.13 0.75±0.13 0.09±0.06 0.1±0.06 0.37±0.14 0.12±0.06 0.11±0.06 0.08±0.05

Table 3: Comparison of SAGE with two variants of the gaze truth.

Real-time applicability of SAGE-Net - In Figure 1 we compare fps rate and F1 score of the SAGE-
trained algorithms with the DR(eye)VE multi-branch network [3], which included optical-flow and semantic
segmentation branches, along with the raw image prediction.

Table 4 further shows a comparison of the number of trainable parameters between our approach and [3].
In addition to the computational inefficiency observed, optical flow, by itself, also does not provide information
regarding a salient object’s absolute velocity, which we think is vital for driving.

Added results on some real-world video data are shown in the attached video.
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Figure 1: Comparison of fps rate and F1 score.

F1 score #params F1 score
#params × 109

DR(multi-branch) [3] 0.09 40,578,441 2.22
SAGE-DR 0.34 13,515,395 25.16

Table 4: Comparison of F1 score and #trainable parameters
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